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Abstract—In this paper, a wavelet-based underwater acoustic
(UWA) communication system is proposed. The convolutional
structure of the UWA channel is exploited and the pilot assisted
channel estimation is formulated as a sparse recovery problem.
Then the restricted isometry property (RIP) of the measurement
matrix is investigated via eigenvalue analysis and Gersgorin circle
theorem. It’s proved that the sparse recovery of the wavelet-
based UWA channel satisfies the RIP. With the above setup,
comparisons of channel estimation for OFDM-based and wavelet-
based UWA communication systems are deployed. Simulation re-
sults show that the wavelet-based system achieves more accurate
channel estimation performance than the OFDM-based system
under the same conditions of bandwidth, duration, data rate and
channel profile.

Index Terms—Underwater acoustic (UWA) communications,
sparse channel estimation, compressed sensing (CS), wavelet,
OFDM.

I. Introduction

With the increasing interest in underwater acoustic (UWA)
communications, the study of high rate and reliable digital
communications for submarines and various underwater ve-
hicles is receiving a great deal of attention and promoting
applications such as deep sea fishing, oil exploration, wildlife
tracking and environmental monitoring. However, three main
challenges exist in the development of UWA communications.
The first one is the scarce frequency resource. UWA signals
experience considerable attenuation at high frequency range
due to the fact that the water absorption grows rapidly as
the distance and the carrier frequency increase. On the other
hand, UWA signal at low frequency is severely contaminated
by the UWA channel noise. Therefore the valid band for UWA
communications is only available at medium frequency and is
very limited. For example, to communicate at the distance
of 100 kilometers, only 1 kHz bandwidth is available. The
second challenge is the Doppler effect. Since the bandwidth is
comparable to the carrier frequency in UWA communications,
it’s a typical wideband system where the Doppler shift cannot
be regarded as the same for the whole band. Moreover, con-
sidering that the speed of sound, i.e., 1500 m/s in the seawater,
is very slow compared to the speed of electro-magnetic waves
in the air, any relative motion between the transmitter and
the receiver will cause severe Doppler distortion. The last
challenge is the abundant multipath propagation. In addition

to the direct path, the acoustic signal propagates via multiple
reflections from the surface, bottom and other objects. The
large delay spread leads to strong frequency selectivity that
may be highly time-varying. The inter-symbol interference
(ISI) may spread over several hundreds of symbol periods,
which can bring heavy burden to the front-end preprocessing
for combatting the channel effect at the receiver.

Recently, orthogonal frequency-division multiplexing
(OFDM) which has prevailed in terrestrial wireless systems
has also been applied to UWA communications [1], [2].
OFDM transforms the frequency-selective channel into
several parallel flat-fading narrowband subchannels, where
each subband only needs a single-tap equalizer. Therefore, the
high complexity associated with the long decision-feedback
equalizer (DFE) in single carrier systems is mitigated.
More recently, the wavelet has been applied for UWA
communications due to its inherent advantage to filter out
narrow band interference by wavelet denoising [3], [4].
In OFDM, it usually requires a guard interval, e.g., cyclic
prefix (CP) or zero padding (ZP), to combat inter-channel
interference (ICI) and ISI caused by channel multipaths. The
overhead of the guard interval is saved in wavelet systems,
especially for UWA channel whose delay spread is usually
very large. Additionally, OFDM employs rectangular or other
types of window to suppress side lopes of power spectrum,
which produces ICI and ISI that damage the orthogonality of
subcarriers. It’s demonstrated in [5] that lower ICI and ISI
than OFDM can be achieved in wavelet systems. In particular,
a wavelet filter bank system can be regarded as the extension
of an OFDM system where the Fourier basis is employed
instead of the wavelet basis [6].

Nevertheless, one of the largest barriers blocking UWA
communications is the UWA channel distortion. Compared to
single carrier systems, OFDM estimates the channel before
making the one-tap channel equalization, which substantially
reduces the receiver’s complexity. And further combining the
recently emerged compressed sensing (CS) techniques, UWA
channel estimation is much more simplified. The channel
impulse response (CIR) can be reconstructed through sparse
recovery algorithms since the UWA channel is usually dom-
inated by a small number of significant paths, resulting in a
sufficient sparse CIR. This topic is currently undergoing explo-
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sive discussions [2], [7], [8]. Many CS algorithms including
matching pursuit (MP), orthogonal matching pursuit (OMP)
and basis pursuit (BP) have been applied for UWA OFDM
channel estimation [9].

In this paper, we first construct a wavelet-based UWA
communication system. We exploit the convolutional structure
and formulate the pilot assisted UWA channel estimation as
a sparse recovery problem. Then we investigate the restrict-
ed isometry property (RIP) of the measurement matrix via
eigenvalue analysis and Gersgorin circle theorem. With these
preparations, we compare the channel estimation performance
for the wavelet-based and OFDM-based UWA communication
systems under the same conditions of bandwidth, duration,
channel profile and data rate.

The notation used in this paper is according to the conven-
tion. Symbols for matrices (upper case) and vectors (lower
case) are in boldface. (·)T, | · |, ∥ · ∥2, ⌊·⌋, R, diag{·}, IL and
CN denote transpose, absolute value, ℓ2-norm, the floor, the
set of real number, the diagonal matrix, the identity matrix
with dimension L and the complex Gaussian distribution,
respectively.

II. Problem Formulation

We consider the UWA channel that has a time-varying
multipath CIR as

h(τ, t) =
S∑

i=1

ξi(t)δ(τ − τi(t)) (1)

where S , ξi(t) and τi(t) are the number of total path, the
path attenuation and path delay of the ith time-varying path,
respectively. We adopt two assumptions as follows.

1) All paths have the same Doppler scaling factor α(t) such
that

τi(t) ≈ τi − α(t)t (2)

which supposes the dominant Doppler shift is caused by the
relative movement between the transmitter and the receiver [1].

2) ξi(t), τi(t) and α(t) are constant over each data block
which contains data symbols and training symbols. This as-
sumption is reasonable because the UWA channel coherence
time is usually on the order of seconds while the duration of
each data block is no more than hundreds of milliseconds.
In fact this assumption is common when we deal with time-
varying channels.

With these two assumptions, we directly sample the received
passband signal without down conversion since the frequency
range used for UWA communications is usually in tens of
thousands of hertz, which is more convenient to implement
in software-defined radio (SDR). In order to estimate the
resampling factor, we design each data block containing one
preamble and one postamble. In [10], a structure of preamble
is proposed where it consists of two identical OFDM symbols
and one CP. And correspondingly, a bank of self-correlators
is employed for the receiver with each of the self-correlators
matched to a different duration. However, the shortcoming of
this approach is that the estimation accuracy relies on the

number of self-correlators. Therefore in this paper, we design
the preamble and postamble to be linear-frequency-modulated
(LFM) signals. By cross-correlating the received signal with
the known preamble and postamble, the receiver estimates the
length of each data block and figures out the resampling factor,
which is more flexible than using a bank of self-correlators.
After resampling, there is only a residual carrier frequency
offset (CFO) which can be viewed as uniform for the whole
bandwidth. Hence, a wideband system is converted into a
narrow band system with frequency-independent CFO, which
can be conveniently compensated in the wavelet filter bank
systems [11].

According to the filter bank theories in wavelet, the scaling
function and the wavelet function can be considered as a low
pass filter and a high pass filter, respectively. Figure 1 gives a
block diagram of wavelet-based UWA communication system.
The serial data stream x(n) is first converted into M parallel
multirate data streams, x0(n), x1(n), . . . , xM−1(n), where

xi(n) =
{

x(2i+1 · n − 2i), i = 0, 1, . . . ,M − 2
x(2M−1 · n − 2M−1). i = M − 1 (3)

Then they pass through a bank of reconstruction wavelet
filters with each filter comprising an upsampling operation
↑ ni (i = 0, 1, . . . ,M − 1) and a filtering operation fi(n)
(i = 0, 1, . . . ,M − 1). The output of every branch is combined
together, denoted as s(n). Then s(n) is sent into the UWA
channel. At the receiver, r(n) is first input into a bank of
decomposition wavelet filters with each filter comprising a
digital filtering operation gi(n) (i = 0, 1, . . . ,M − 1) and a
downsampling operation ↓ ni (i = 0, 1, . . . ,M − 1). After that,
the parallel data streams are converted into a serial data stream
y(n).

For a Haar wavelet, the scaling function and the wavelet
function can be written as

p(n) =
1
√

2
δ(n) +

1
√

2
δ(n − 1) (4)

q(n) =
1
√

2
δ(n) − 1

√
2
δ(n − 1) (5)

respectively. After the cascaded filter conversion and the Z-
transform, we have

ni =

{
2i+1, i = 0, 1, . . . ,M − 2
2M−1, i = M − 1 (6)

and

fi(z) =


∏M−1

k=0 p(z2k
), i = M − 1

q(z2i
)
∏i−1

k=0 p(z2k
), i = 1, . . . ,M − 2

q(z), i = 0
(7)

where fi(z) is the Z-transform of fi(n), denoted as

fi(z) =
+∞∑

n=−∞
fi(n)z−n. (8)
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Fig. 1. Wavelet-based UWA communication system.

Therefore we obtain

s(n) =

M−1∑
i=0

∞∑
k=0

xi(k) fi(n − 2i+1k)

=

∞∑
k=0

[
x(2M−1 · k − 2M−1)

+

M−2∑
i=0

x(2i+1 · k − 2i)
]
fi(n − 2i+1k). (9)

Now we can formulate the received signal r(n) as the
discrete time convolution between s(n) and h(n), which is
denoted as

r(n) = s(n) ∗ h(n) + η(n) (10)

where η(n) is the sample of additive white Gaussian noise
(AWGN). Let L denote the length of h(n) and suppose the
training sequence to be {s(n), n = 0, 1, . . . ,NT − 1} (NT > L).
The resulting input-output relation of (10) can be represented
as a matrix-vector product

r̃ = Ãh + η̃ (11)

where r̃ = [r(0), r(1), · · · , r(NT − 1)]T and h =

[h(0), h(1), · · · , h(L − 1)]T. η̃ = [η(0), η(1), · · · , η(NT −
1)]T∼CN(0, σ2

ηINT ) is a noise vector with each component to
be an AWGN sample. And

Ã =


s(0) s(−1) · · · s(−L + 1)
s(1) s(0) · · · s(−L + 2)
...

...
. . .

...
s(NT − 1) s(NT − 2) · · · s(NT − L)

 (12)

contains the known training sequences {s(n), n = 0, 1, . . . ,NT −
1} as well as the unknown sequences {s(n), n = −L + 1,−L +
2, . . . ,−1} that locate in the upper-right triangular area of
Ã. The unknown sequences include data symbols and null
symbols that are unknown to the receiver. Therefore, we
cannot directly use Ã for channel estimation. Instead, we have
to use a submatrix as

A =


s(L − 1) s(L − 2) · · · s(0)

s(L) s(L − 1) · · · s(1)
...

...
. . .

...
s(NT − 1) s(NT − 2) · · · s(NT − L)

 (13)

of Ã for channel estimation. We observe that all compo-
nents of A are the known training symbols from {s(n), n =

0, 1, . . . ,NT − 1}. The dimension of Ã and A are NT by L and
(NT − L + 1) by L, respectively. Then (11) is reformulated as

r = Ah + η (14)

where r = [r(L − 1), r(L), . . . , r(NT − 1)]T and η = [η(L −
1), η(L), . . . , η(NT − 1)]T. If NT ≥ 2L − 1, (14) is an over-
determined problem and the least squares (LS) can be applied.
However, we are more interested in the under-determined case
where L ≤ NT < 2L − 1 and the rows of A are less than
its columns. In this case, only a small number of training
sequence is required, which indicates the improvement in
data rate and spectrum efficiency. Combining with the re-
cently emerged CS techniques, (14) is undergoing extensive
discussions on the sparse recovery performance of h from
the observations r and the measurement matrix A. So in the
following section, we investigate the RIP of A.

III. Restricted Isometry Property

Recent advances in CS show that h in (14) can be recovered
from r with high accuracy when A satisfies RIP [12].

Definition: A ∈ Rm×n satisfies RIP if

(1 − δ)∥h∥22 ≤ ∥Ah∥22 ≤ (1 + δ)∥h∥22 (15)

holds for all S -sparse vectors h ∈ Rn (∥h∥0 ≤ S ).
It can be easily obtained from (15) that

(1 − δ)∥h∥22 ≤ λmin∥h∥22
≤ ∥Ah∥22 ≤ λmax∥h∥22 ≤ (1 + δ)∥h∥22

(16)

where λmin and λmax denote the minimum and maximum eigen-
values of AT A, respectively. Then this sufficient condition for
RIP is simplified as

1 − δ ≤ λmin ≤ λmax ≤ 1 + δ (17)

Here we start with the discussion on the RIP condition of A
in (14) before applying CS algorithms for the wavelet-based
UWA communication system. The toeplitz compressed sensing
matrices have been studied in [13]. However, here we treat it
in a simplified approach. First we normalize A so that each
column of A is normalized to be one. We have

A = X D (18)
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where D = diag{κ1, κ2, . . . , κL} is a diagonal matrix with each
diagonal component to be a normalized coefficient and

X =


s(L−1)
κ1

s(L−2)
κ2

· · · s(0)
κL

s(L)
κ1

s(L−1)
κ2

· · · s(1)
κL

...
...

. . .
...

s(NT−1)
κ1

s(NT−2)
κ2

· · · s(NT−L)
κL

 (19)

is an ℓ2-normalized matrix. X ∈ RN×L where N = NT − L + 1.
In this way we guarantee that every diagonal component of
V = XTX is one. Let Vi, j represent the component in i-th row,
j-th column of V. We have

{
Vi,i = 1

∣∣∣ i ∈ {1, 2, , . . . , L}
}
.

Suppose h̃ = Dh. We reformulate (14) as

r = Xh̃ + η. (20)

After h̃ is reconstructed, we can obtain h by

h = D−1 h̃. (21)

It’s observed that each off-diagonal component of V is the
inner product between two different columns of X, i.e.,

V1,2 =
(
s(L − 2)s(L − 1) + s(L − 1)s(L)
+ s(L)s(L + 1) + s(L + 1)s(L + 2)
+ · · · + s(NT − 3)s(NT − 2)
+ s(NT − 2)s(NT − 1)

) /
κ1κ2. (22)

It’s possible to split the summation into two groups as

V1,2 =
(
s(L − 2)s(L − 1) + s(L)s(L + 1) + · · ·

+ s(NT − 3)s(NT − 2)
) /
κ1κ2

+
(
s(L − 1)s(L) + s(L + 1)s(L + 2)

+ · · · + s(NT − 2)s(NT − 1)
) /
κ1κ2 (23)

so that the items of the summation within each group are
independent. We denote

V(1)
1,2 = s(L − 2)s(L − 1) + s(L)s(L + 1) + · · ·

+ s(NT − 3)s(NT − 2) (24)

and

V(2)
1,2 = s(L − 1)s(L) + s(L + 1)s(L + 2) + · · ·

+ s(NT − 2)s(NT − 1). (25)

Then
V1,2 =

(
V(1)

1,2 + V(2)
1,2

) /
κ1κ2. (26)

Considering traditional modulation schemes such as phase
shift keying (PSK) and quadrature amplitude modulation
(QAM), the constellation points are symmetrically distributed
and thus the mean of these items is zero. Also notice that
the amplitude of these points is finite because they usually
lie within a circular or a rectangular area. Then we have
E
{
s(n)

}
= 0 and ∣∣∣s(n)

∣∣∣ ≤ κ, n = 0, 1, . . . ,NT . (27)

According to the Hoeffding’s inequality which states

Pr
( ∣∣∣∣∣ k∑

i=1

ωi−E
{ k∑

i=1

ωi

} ∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− 2t2∑k

i=1(bi − ai)2

)
(28)

where {
ωi | ωi ∈ [ai, bi], i ∈ {1, 2, . . . , k}

}
(29)

are independent bounded random variables, we get

Pr
(
V(1)

1,2 ≥ t
)
≤ 2 exp

(
− t2

(NT − L + 1)κ4

)
(30)

and

Pr
(
V(2)

1,2 ≥ t
)
≤ 2 exp

(
− t2

(NT − L + 1)κ4

)
. (31)

Therefore we get

Pr
( ∣∣∣V1,2

∣∣∣ ≥ δ

L − 1

)
≤ Pr

(∣∣∣V(1)
1,2

∣∣∣ ≥ δκ1κ2
2(L − 1)

or
∣∣∣V(2)

1,2

∣∣∣ ≥ δκ1κ2
2(L − 1)

)
≤ 2 max

{
Pr

(
V(1)

1,2 ≥
δκ1κ2

2(L − 1)

)
,Pr

(
V(2)

1,2 ≥
δκ1κ2

2(L − 1)

) }
≤ 4 exp

(
−

δ2κ21κ
2
2

4(NT − L + 1)(L − 1)2κ4

)
.

(32)

These steps can be conveniently extended to the other
off-diagonal elements of V. According to Gersgorin circle
theorem, the eigenvalues of V all lie in L discs. The i-th disc
is centering at Vi,i with the radius to be

ri,i =

L∑
j=1, j,i

|Vi, j|. (33)

It can be obtained from (32) that

Pr
(
ri,i ≥ δ

) ≤ [
4 exp

(
−

δ2κ21κ
2
2

4(NT − L + 1)(L − 1)2κ4

)]L−1
(34)

which is the probability of the event that the eigenvalues of
V lie outside [1 − δ, 1 + δ]. Based on (17), we show that X
satisfies RIP with the probability greater than

1 −
[
4 exp

(
−

δ2κ21κ
2
2

4(NT − L + 1)(L − 1)2κ4

)]L−1
. (35)

IV. Simulation results

The OFDM parameters used in our simulation are set ac-
cording to [1], as listed in Table I. The bandwidth B = 12kHz
is centered at fc = 27kHz and divided into Nc = 512 OFDM
subcarriers, among which Np = 70 and Nu = 59 are used for
pilot subcarriers and null subcarriers, respectively. The useful
length of each OFDM symbol is Tu = 42.67ms which equals
the reciprocal of the subcarrier spacing. The length of the ZP
guard interval is Tg = τmax = 25ms or equivalently Ng = 300
after sampling. Then the length of each OFDM symbol is
Ts = Tu + Tg = 67.67ms.

We consider the UWA transmission in the unit of OFDM
packet which consists of one preamble, one postamble and 64
OFDM symbols, as shown in Figure 2. Both the preamble and
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Fig. 2. The structure of OFDM packet and wavelet packet.

TABLE I
Parameters of OFDM-based system.

Number of total subcarriers Nc = 512
Number of pilot subcarriers Np = 70
Number of null subcarriers Nu = 59

Length of zero padding Ng = 300
Carrier frequency fc = 27kHz
Signal bandwidth B = 12kHz

Doppler shift at fc 76.98Hz

the postamble are designed to be LFM signals, which are used
to mitigate the Doppler effect. Therefore the Doppler scaling
factor is regarded as the same within each OFDM packet. The
relative speed between the transmitter and the receiver is 8.3
knots, resulting in the Doppler shift at fc to be around 76.98Hz.

The multipath sparse channel model defined in (1) is used
to generate UWA channel data. Within the OFDM pack-
et, a different CIR vector is randomly generate for each
OFDM symbol, according to the approach proposed in [7].
{ξi}∼CN(0, e−bτi IS ). b = 1/16 is the exponential power delay
profile and τi is the delay spread for the i-th path. Here we
consider a five-path channel with the maximal channel delay
spread τmax = 25ms. A zero CIR vector with the length L is
first generated, where S = 5 positions are randomly selected
as channel taps. Then we produce {ξi} as the attenuation for
each path. In practice, we may replace the above simulated
channel data with the real UWA channel measurements and
it’s verified in [8] that the simulations usually give the same
performance trend as the real UWA experiments.

TABLE II
Parameters of wavelet-based system.

Number of branches in filter bank M = 7
Length of each wavelet symbol NT = 64
Length of the training symbol Nwt = 214

Length of the data symbols Nwd = 192
Carrier frequency fc = 27kHz
Signal bandwidth B = 12kHz

Doppler shift at fc 76.98Hz

In order to fairly compare the channel estimation perfor-
mance of OFDM-based and wavelet-based UWA communica-
tion systems, we set the length of wavelet packet the same
as that of OFDM packet, as shown in Figure 2. The same
preamble and postamble are employed. The parameters of
the wavelet-based system are listed in Table II. The number

of branches is supposed to be M = 7 and therefore the
length of each wavelet symbol is NT = 2M−1 = 64 or
equivalently Tws = 2NT/B = 10.66ms. Since the number of
total channel taps is Lw = Bτmax/2 = 150, the training length
Twt = 35.67ms or equivalently Nwt = 214 is enough to make
accurate channel estimation. Then the full data length Twd of
each wavelet block is Twd = Ts − Twt = 32ms or equivalently
Nwd = 192. We can figure out the number of wavelet data
symbols in each wavelet block as Nws = ⌊Twd/Tws⌋ = 3.
The data rate for OFDM-based and wavelet-based system is
the same to be Ro = Rw = 5.67 × 103 symbols per second
(sps). Therefore, we compare two systems under the same
conditions of bandwidth, duration, channel profile and data
rate. The comparisons of the channel estimation performance
in terms of MSE are illustrated in Figure 3. It is observed
that the MSE performance of wavelet-based system is better
than that of OFDM-based system, especially for large SNR,
i.e., SNR> 20dB. For the specific system, we also compare
three different CS algorithms, including OMP, StOMP that is
an enhanced version of OMP [14], and Homotopy proposed
in [7]. In both systems, it’s demonstrated that Homotopy
outperforms StOMP and OMP.

0 5 10 15 20 25 30 35
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Homotopy for OFDM

Homotopy for wavelet

StOMP for OFDM

StOMP for wavelet

OMP for OFDM

OMP for wavelet

Fig. 3. Comparisons of channel estimation for OFDM-based and wavelet-
based UWA communication system (S = 5).

Additionally, we also change the number of channel multi-
path to be S = 20 which treats the abundant multipath propa-
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Fig. 4. Comparisons of channel estimation for OFDM-based and wavelet-
based UWA communication system (S = 20).

gations in UWA channel. The other parameters keep the same.
As shown in Figure 4, the performance of channel estimation
for S = 20 is worse than that of S = 5, which implies that the
sparser signals are much easier for the recovery. Wavelet-based
system still outperforms OFDM-based system.

TABLE III
Running times of different CS algorithms.

Algorithm type CPU time (in seconds)
OFDM-based system Wavelet-based system

Homotopy 0.876 0.584
StOMP 1.211 0.983
OMP 0.849 0.539

The complexities of the OMP, StOMP and Homotopy
algorithm for two systems in terms of the CPU running time
are compared in Table III where SNR is fixed to be 30dB and
S = 20. The experiments are performed using MATLAB v7.9
(R2009b) running on a Lenovo laptop with an Intel Core 2
Duo CPU at 2.5GHz and 2GB of memory. We notice that the
running time of StOMP is much larger than that of OMP and
Homotopy; while the Homotopy is similar to that of OMP.
Moreover, the speed of sparse recovery for wavelet-based
system is much faster than OFDM-based system. The reason
lies in the different size of the measurement matrix in two
systems, which directly determines the searching time of two
algorithms. In OFDM-based system, we use Np = 70 pilots
to reconstruct the sparse UWA channel where S = 20 channel
taps of totally Ng = 300 taps are nonzero and the size of the
measurement matrix is 70 by 300. In wavelet-based system,
we use Nwt − Lω + 1 = 65 training symbols to reconstruct the
UWA channel where S = 20 of only Lw = 150 channel taps
are nonzero. The size of the measure matrix is only 65 by 150,
which is much slimmer than that of OFDM-based system.

V. Conclusion
In this paper we have proposed a wavelet-based UWA

communication system. We have exploited the convolutional

structure and formulated the pilot assisted UWA channel
estimation as a sparse recovery problem. We have investigated
the restricted isometry property (RIP) of the measurement
matrix via eigenvalue analysis and Gersgorin circle theorem
and proved it satisfies RIP. Simulation results show that the
wavelet-based UWA communication systems achieves more
accurate UWA channel estimation performance than OFDM-
based couterpart under the same conditions of bandwidth,
duration, data rate and channel profile.
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