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Abstract: Since a better localisation performance is achieved by exploiting the spatial diversity in the distributed multiple-input
and multiple-output (MIMO) radar systems, the authors consider the problem of further improving this performance by optimising
the antenna placement in this study. In the localisation processes, a novel compressed sensing-based method is proposed to
exploit the target sparsity, where an over-complete dictionary matrix containing all the possible echo waveforms from the
discretised area is first established. In addition, to further improve the localisation performance, a novel iterative method is
proposed to minimise the mutual coherence of the dictionary matrix by optimising the antenna placement of both transmitters
and receivers. Moreover, the theoretical distribution of the mutual coherence is derived, and an asymptotic performance with
increasing the number of antennas is also provided. Simulation results demonstrate the localisation performance improvement
for multiple targets by optimising the antenna placement in the distributed MIMO radar.

1 Introduction
In multiple-input and multiple-output (MIMO) radar, a better
performance of target detection and localisation can be achieved by
the antenna diversity and the independently transmitted waveforms
[1–3]. Based on the distance between antennas, the MIMO radar
can be categorised into colocated and distributed MIMO radar:

i. In the colocated MIMO radar, the antennas are close to each
other, and the waveform diversity is exploited to improve the
target detection and estimation performance [4, 5].

ii. In the distributed MIMO radar, the antennas are widely
separated, and the spatial diversity of target's radar cross
section is exploited to improve the target detection
performance [6, 7]; and moreover, an improved performance of
target localisation can be achieved by integrating the delays
between any pair of transmitters (TXs) and receivers (RXs) [3,
8–11].

Therefore, in this paper, we consider the problem of localising
multiple targets by the distributed MIMO radar. According to
compressed sensing (CS) theory, a sparse signal can be
reconstructed from far fewer measurements than that required in
the conventional sampling theory [12, 13]. To exploit the target
sparsity in the detection area, a CS-based MIMO radar system has
been proposed [14], where the improved localisation performance
is achieved with far fewer measurements than that required in the
traditional MIMO radar [15].

To improve the target localisation performance, methods have
also been proposed to optimise the MIMO radar system. For
example, the received waveforms are jointly processed in [16, 17],
and the joint estimation of both target position and velocity has
been proposed in [18]. In addition, the CS-based MIMO radar has
also been optimised to improve the target localisation performance.
For example, the measurement matrix [19], the power allocation,
and the transmitted waveforms [14] are all optimised to decrease
the mutual coherence of the sensing matrix.

In this paper, the localisation for multiple stationary targets is
addressed in the distributed MIMO radar system. The detection
area is first discretised into grids, and an over-complete dictionary
matrix containing the echo waveforms from all grids is built. Then,
we formulate it as a sparse reconstruction problem, where the

elements in the support set correspond to the target positions.
Therefore, by exploiting the target sparsity, the CS-based methods
are adopted to reconstruct the sparse vector and localise the targets.
In addition, we obtain the theoretical distribution of the mutual
coherence with the random placement of antennas, and analyse the
asymptotical property with the infinite number of antennas. Since
the target localisation performance depends on the placement of
TXs and RXs in the distributed MIMO radar [20, 21], the target
localisation can also be improved benefiting from the geographical
deployment [22, 23]. So we propose an iterative method to
optimise the placement of both TXs and RXs, and to further
improve the performance of target localisation by minimising the
mutual coherence of the dictionary matrix. Moreover, the
performance improvement is also measured by the theoretical
formulations.

In the remainder of this work, the system model of distributed
MIMO radar is given in Section 2. The CS model for target
localisation is provided in Section 3. Section 4 proposes an
iteration method to optimise the antennas placement and minimise
the mutual coherence of dictionary matrix. The theoretical
distribution of the mutual coherence with the random antennas
placement is analysed in Section 5. Section 6 shows the simulation
results and Section 7 concludes this paper.

The notations used in this work are defined as follows. Symbols
for vectors (lower case) and matrices (upper case) are in bold face.
ℕ+, ⋅ H, ⋅ T, diag{  ·  }, IQ, 𝒞𝒩 0, R , ∥ ⋅ ∥0, ∥ ⋅ ∥1, ∥ ⋅ ∥2
and vec{  ·  } denote the natural number set, the conjugate
transpose (Hermitian), the transpose, the diagonal matrix, the Q × 
Q identity matrix, the complex Gaussian distribution with zero
mean and covariance being R, the ℓ0 norm, the ℓ1 norm, the ℓ2
norm and the vectorisation of a matrix, respectively.

2 System model
As shown in Fig. 1, the distributed MIMO radar is adopted to
localise multiple stationary targets, where the number of TXs, RXs
and targets are M, N and K, respectively. All TXs, RXs and targets
are widely separated in the area 0, x0 × 0, y0 . Orthogonal
waveforms are transmitted independently by the TXs, and the
waveform of the mth TX is denoted as Re sm t ej2π f ct , where sm(t)
(0 ≤ t ≤ T) denotes the complex baseband waveform, fc denotes the
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carrier frequency, T denotes the pulse duration, and t denotes the
continuous time. 

The waveform, which is transmitted by the mth TX, echoed
from the kth target and received by the nth RX, can be represented
as

ym, n, k(t) = Re αksm t − τm, n, k ej2π f c(t − τm, n, k) , (1)

where αk denotes the scattering coefficient of the kth target. Since
the placement optimisation for the MIMO radar is mainly
considered in this paper, for the simplification, we assume that the
scattering coefficients of the different targets are different, but keep
the same for different view angles of the same target. This
assumption has also been considered in [15, 24–26]. τm,n,k denotes
the delay of the kth target, and can be expressed as

τm, n, k = 1
c ∥ pT , m − tk ∥

2
+ ∥ pR, n − tk ∥

2
, (2)

where pT , m ∈ ℝ2, pR, n ∈ ℝ2 and tk ∈ ℝ2 denote, respectively, the
positions of the mth TX, the nth RX and the kth target, and c
denotes the speed of electromagnetic wave. Therefore, collecting
the echo waveforms from all targets and TXs, the received signal
of the nth RX can be written as

yn(t) = ∑
k = 0

K − 1
∑

m = 0

M − 1
ym, n, k(t) . (3)

At each RX, there are M matched filters for all the orthogonally
transmitted waveforms, where the matched filter for the mth
transmitted waveform can be expressed as hm(t) = sm

H(T − t). Then,
after down converting and passing through all matched filters, the
output of the mth matched filter at the nth RX can be written as

yn, m′ (t) = ∑
k = 0

K − 1
αke

− j2π f cτm, n, k∫ sm(t′ − τm, n, k)hm(t − t′)dt′ . (4)

For the nth RX, by assuming that the kth target is on the grid, we
sample the integration waveform at t = T + τm,n,k, where τm,n,k
denotes the delay of the kth target. The sampled signal of the mth
matched filter is

ym, n = ∑
k = 0

K − 1
ak e− j2π f cτm, n, k = ϕm, n

T α, (5)

where the transmitted power is ∫ 0
Tsm

H(t)sm(t) dt = 1, the scattering
coefficient vector is α ≜ α0, α1, …, αK − 1

T, and the phase vector
caused by delay is

ϕm, n ≜ e− j2π f cτm, n, 0, e− j2π f cτm, n, 1, …, e− j2π f cτm, n, (K − 1) T
. (6)

Then, collecting sampled signals ym,n from all RXs, a vector can be
obtained

y ≜ vec Y = Φα, (7)

where the mth row and nth column of Y is

ym, n and Φ ≜

ϕ0, 0
T

⋮
ϕ(M − 1), 0

T

ϕ0, 1
T

⋮
ϕ(M − 1), (N − 1)

T

.

Finally, with the additive white Gaussian noise (AWGN)
n ∼ 𝒞𝒩 0, σn

2 IMN , where σn
2  denotes the noise variance, the

received vector can be written as

r = Φα + n . (8)

3 Localisations for multiple targets
In this paper, we use the CS-based methods to localise multiple
targets. First, as shown in Fig. 2, we discretise the target area
0, x0 × 0, y0  into P × Q grids, where x0 = PΔ, (P ∈ ℕ+), y0 = QΔ,

(Q ∈ ℕ+), and Δ denotes the range resolution. Then, an over-
complete dictionary matrix Ψ can be obtained by collecting the
sampled signals from all the grids. The dictionary matrix Ψ is
defined as

Ψ ≜ ψ0, ψ1, …, ψPQ − 1 ∈ ℂMN × PQ, (9)

where PQ ≫ MN. ε;a (0 ≤ a ≤ PQ − 1) denotes the ath column of
Ψ, and indicates the sampled signals echoed from the ath grid
point. Therefore, ε;a can be written as

ψa

= e− j2π f cτ0, 0, a…e− j2π f cτ0, N − 1, a…e− j2π f cτm, 0, a…e− j2π f cτM − 1, N − 1, a
T

∈ ℂMN × 1,
(10)

where τm,n,a is the delay from the mth TX to the ath grid point and
received by the nth RX, and τm,n,a can be obtained from (2) by
replacing the target position with that of grid point. 

The received signal in (8) can be rewritten as

r = Ψx + n, (11)

Fig. 1  Distributed MIMO radar system
 

Fig. 2  Discretised detection area
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where x ∈ ℂPQ × 1 denotes a sparse vector. The number of non-zero
entries in x equals to the number of targets, the non-zero entries
indicate the target scattering coefficients α, and the index of non-
zero entries correspond to the targets positions. For example, the
scattering coefficient of the kth target is αk and the target position tk
is on the bth grid. Then, the bth entry (0 ≤ b ≤ PQ − 1) of x,
denoted as xb, is αk, i.e. xb = αk.

Therefore, the target locations and scattering coefficients can be
estimated by reconstructing the sparse vector x from the received
signal r. Then, the following CS optimisation problem can be
adopted:

min
x

∥ x ∥0 s . t . ∥ r − Ψx ∥2 ≤ ϵ, (12)

where ε is used to control the reconstruct accuracy and is usually
set as ε = σn, and ℓ0 counts the number of non-zero elements. Then,
we can adopt the CS-based methods to reconstruct the sparse
vector x and estimate the target locations and scattering
coefficients. The CS algorithms can be categorised into two types
including the ℓ1 optimisation methods and the greedy algorithms
[27, 28].

In the ℓ1 optimisation methods, the ℓ0 norm problem in (12) is
relaxed to a convex problem by the ℓ1 norm

min
x

∥ x ∥1 s . t . ∥ r − Ψx ∥2 ≤ ϵ, (13)

which can be solved by the convex optimisation methods [29].
Moreover, by introducing an additional parameter λ, the following
unconstrained optimisation problem can be also obtained [30]:

min
x

λ∥ x ∥1 + 1
2∥ r − Ψx ∥2 . (14)

By choosing the appropriate λ and ε, the same solutions in problem
(13) and (14) can be achieved [31]. Furthermore, the ℓ1
optimisation problem can be also expressed as a least absolute
selection and shrinkage operator (LASSO) problem [32]

min
x

∥ r − Ψx ∥2 s . t . ∥ x ∥1 ≤ ϵ′, (15)

where ε′ > 0 and an appropriate ε′ can guarantee the same solution
with (13). Therefore, with appropriate parameters ε, λ and ε′, the
same solutions can be achieved by the convex optimisation
problems (13)–(15).

Since the ℓ1 optimisation problems are convex, the Lagrange
multipliers and the Karush–Kuhn–Tucker over interior-point
method can be used. In addition, to further reduce the
computational complexity, some efficient algorithms have been
adopted, such as approximate message passing [33], fast adaptive
shrinkage/thresholding algorithm (FASTA) [34], ℓ1-based spectral
projection gradient [35]. Rather than the ℓ1 optimisation problems,
the greedy algorithms have also been proposed to solve the ℓ0
optimisation problem. For example, matching pursuit (MP) [36],
orthogonal MP (OMP) [37], stagewise OMP [38], regularised
OMP [39], compressive sampling matching pursuit (CoSaMP)
[40], have been proposed.

After establishing the CS-based radar system model in (11), we
can adopt the typical CS-based methods to estimate the targets
locations via reconstructing the sparse vector x. Moreover, in this
paper, to further improve the estimation performance, we propose a
novel method to optimise the antennas placement, and more details
about the proposed method are given in the following section.

4 Placement optimisation for MIMO antennas
Since the CS-based methods are adopted to estimate the targets
locations, the localisation performance is determined by the CS
reconstruction performance. Therefore, in this section, we are
focusing on improving the reconstruction performance. In the CS

theory, restricted isometry property (RIP) [29] guarantees the
general reconstruction performance. To reconstruct a z-sparse
signal x, the dictionary matrix Ψ must satisfy the following RIP
condition for all the z-sparse signals x

1 − δz ∥ x ∥2
2 ≤ ∥ Ψx ∥2

2 ≤ 1 + δz ∥ x ∥2
2, (16)

where δz is an isometry constant and not very closed to one.
However, it is not practical to estimate the RIP of a dictionary
matrix Ψ with large dimension. Therefore, the mutual coherence as
an alternative of RIP is proposed [29]

μ(Ψ) ≜ max
a ≠ b

ψa
Hψb

∥ ψa ∥
2
∥ ψb ∥

2
, (17)

where ε;a (0 ≤ a ≤ PQ − 1) and ε;b (0 ≤ b ≤ PQ − 1) denote the ath
and bth columns of Ψ, respectively. In addition, with the mutual
coherence μ(Ψ), the upper bound of RIP can be obtained as
δz ≤ (z − 1)μ(Ψ). Therefore, minimising the mutual coherence
μ(Ψ) can further improve the reconstruction performance of the
CS-based methods [14, 19]. In this paper, we propose a novel
method to optimise the antennas locations of MIMO radar system
and minimise the mutual coherence μ(Ψ).

With the definition of ε;a in (10), we have

∥ ψa ∥
2

= ∑
m = 0

M − 1
∑
n = 0

N − 1
e− j2π f cτm, n, a

2
= MN, (18)

∥ ψb ∥
2

= ∑
m = 0

M − 1
∑
n = 0

N − 1
e− j2π f cτm, n, b

2
= MN, (19)

so ∥ ψa ∥
2
∥ ψb ∥

2
= MN. The numerator of (17) can be simplified

as

ψa
Hψb = ∑

n = 0

N − 1
∑

m = 0

M − 1
ej2π f cτm, n, ae− j2π f cτm, n, b

= ∑
n = 0

N − 1
∑

m = 0

M − 1
Ba, b(pT , m)Ba, b(pR, n) ,

(20)

where we define

Ba, b(pT , m) ≜ e
j2π

f c
c ∥ pT, m − ta ∥2 − ∥ pT, m − tb ∥2 , (21)

Ba, b(pR, n) ≜ e
j2π

f c
c ∥ pR, n − ta ∥2 − ∥ pR, n − tb ∥2 . (22)

We define the sum of Ba, b(pT , m) and Ba, b(pR, n), respectively, as

AT , a, b ejβT, a, b ≜ ∑
m = 0

M − 1 1
M Ba, b(pT , m), 0 ≤ AT , a, b ≤ 1, (23)

AR, a, b ejβR, a, b ≜ ∑
n = 0

N − 1 1
N Ba, b(pR, n), 0 ≤ AR, a, b ≤ 1, (24)

where AT,a,b and AR,a,b denote the amplitudes, and βT,a,b and βR,a,b
denote the phases. Then, we can obtain

1
MN ψa

Hψb = 1
M ∑

m = 0

M − 1
Ba, b(pT , m) 1

N ∑
n = 0

N − 1
Ba, b(pR, n)

= AT , a, b ejβT, a, bAR, a, b ejβR, a, b = AT , a, bAR, a, b .
(25)

Therefore, the mutual coherence in (17) can be simplified as
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μ(Ψ) ≜ 1
MN max

a ≠ b
ψa

Hψb = max
a ≠ b

AT , a, bAR, a, b . (26)

To minimise the mutual coherence μ(Ψ), we propose a method to
add the TX and RX antennas iteratively, which is described in
Algorithm 1 (see Fig. 3). When the number of TXs and RXs are,

respectively, m and n, the corresponding mutual corresponding
μ Ψm, n  can be obtained. Then, we add one more TX, and the
mutual coherence μ(Ψm + 1, n), the upper and lower bounds can be,
respectively, obtained as (see (27) and (28)) (see (28) and (29)) 
(see (29)) 

μ(Ψm + 1, n) ≜ 1
(m + 1)n max

a ≠ b
∑

n1 = 0

n − 1
∑

m1 = 0

m
Ba, b(pT , m1

)Ba, b(pR, n1
)

= 1
(m + 1)n max

a ≠ b
Ba, b(pT , m) ∑

n1 = 0

n − 1
Ba, b(pR, n1

) + ∑
n1 = 0

n − 1
∑

m1 = 0

m − 1
Ba, b(pR, n1

)Ba, b(pT , m1
) ,

(27)

μ(Ψm + 1, n) ≤ 1
(m + 1)n max

a ≠ b
Ba, b(pT , m) ∑

n1 = 0

n − 1
Ba, b(pR, n1

) + ∑
n1 = 0

n − 1
∑

m1 = 0

m − 1
Ba, b(pR, n1

)Ba, b(pT , m1
)

≤ 1
(m + 1)n max

a ≠ b
Ba, b(pT , m) ∑

n1 = 0

n − 1
Ba, b(pR, n1

) + m
m + 1 μ(Ψm, n)

≤
mμ(Ψm, n) + 1

m + 1 ,

(28)

μ(Ψm + 1, n) ≥ 1
(m + 1)n max

a ≠ b
Ba, b(pT , m) ∑

n1 = 0

n − 1
Ba, b(pR, n1

) − ∑
n1 = 0

n − 1
∑

m1 = 0

m − 1
Ba, b(pR, n1

)Ba, b(pT , m1
)

= 1
(m + 1)n max max

a ≠ b
Ba, b(pT , m) ∑

n1 = 0

n − 1
Ba, b(pR, n1

) − ∑
n1 = 0

n − 1
Ba, b(pR, n1

) ∑
m1 = 0

m − 1
Bab(pT , m1

) ,

× max
a ≠ b

∑
n1 = 0

n − 1
Ba, b(pR, n1

) ∑
m1 = 0

m − 1
Ba, b(pT , m1

) − Ba, b(pT , m) ∑
n1 = 0

n − 1
Ba, b(pR, n1

)

≥ max max
a ≠ b

1
(m + 1)n Ba, b(pT , m) ∑

n1 = 0

n − 1
Ba, b(pR, n1

) − m
m + 1 ,

mμ(Ψm, n) − 1
m + 1

≥
mμ(Ψm, n) − 1

m + 1 .

(29)

Fig. 3  Algorithm 1: The optimisation of antenna placement
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As shown in (28) and (29), after adding one more TX, the
mutual coherence has the following lower and upper bounds:

μ(Ψm + 1, n) ∈
mμ(Ψm, n) − 1

m + 1 ,
mμ(Ψm, n) + 1

m + 1 . (30)

Using the same method, after adding one more RX, the lower and
upper bounds of mutual coherence can be obtained

μ(Ψm, n + 1) ∈
nμ(Ψm, n) − 1

n + 1 ,
nμ(Ψm, n) + 1

n + 1 . (31)

Since we also have

μ(Ψm, n) ∈
mμ(Ψm, n) − 1

m + 1 ,
mμ(Ψm, n) + 1

m + 1 , (32)

μ(Ψm, n) ∈
nμ(Ψm, n) − 1

n + 1 ,
nμ(Ψm, n) + 1

n + 1 , (33)

We cannot guarantee that the mutual coherence is decreasing with
adding one more TX and RX antennas randomly. Therefore, at
Steps 8 and 16 of Algorithm 1 (Fig. 3), we choose the position for
the additional TX or RX antenna via minimising the corresponding
mutual coherence.

5 Statistical analysis
To describe the performance of Algorithm 1 (Fig. 3) in decreasing
the mutual coherence, the distribution of mutual coherence with
random antennas placement will be analysed in this section. Given
the grid positions ta and tb, we define the following variables:

xT , a, b, m ≜ ∥ pT , m − ta ∥
2
− ∥ pT , m − tb ∥

2
, (34)

xR, a, b, n ≜ ∥ pR, n − ta ∥
2
− ∥ pR, n − tb ∥

2
. (35)

When M TXs and N RXs are chosen randomly in the area
0, x0 × 0, y0  with independent and identical distributions, xT,a,b,m

and xR,a,b,n also have independent and identical distributions for
different parameters m and n.

Define the probability density functions (PDFs) of xT,a,b,m and
xR,a,b,n as f xT, a, b

(xT , a, b, m) and f xR, a, b
(xR, a, b, n), respectively. Then,

according to [41], the PDFs of amplitudes AT,a,b and AR,a,b in (23)
and (24) can be expressed as

f AT, a, b
AT , a, b =

AT , a, b

2π sT1sT2
∫

0

2π
exp

−
(AT , a, bcos θ − γT1)

2

2sT1
−

(AT , a, bsin θ − γT2)
2

2sT2
dθ,

(36)

f AR, a, b
AR, a, b =

AR, a, b

2π sR1sR2
∫

0

2π
exp −

(AR, a, bcos θ − γR1)
2

2sR1

−
(AR, a, bsin θ − γR2)

2

2sR2
dθ, 0 ≤ AR, a, b ≤ 1,

(37)

where

γT1 = ∫ f xT, a, b
(x)cos 1

c 2π f cx dx,

γT2 = ∫ f xT, a, b
(x)sin 1

c 2π f cx dx,

γR1 = ∫ f xR, a, b
(x)cos 1

c 2π f cx dx,

γR2 = ∫ f xR, a, b
(x)sin 1

c 2π f cx dx,

and

sT1 = 1
M∫ f xT, a, b

(x)cos2 1
c 2π f cx dx − γT1

2 ,

sT2 = 1
M∫ f xT, a, b

(x)sin2 1
c 2π f cx dx − γT2

2 ,

sR1 = 1
N∫ f xR, a, b

(x)cos2 1
c 2π f cx dx − γR1

2 ,

sR2 = 1
N∫ f xR, a, b

(x)sin2 1
c 2π f cx dx − γR2

2 .

With the PDFs of AT,a,b and AR,a,b in (36) and (37), the cumulative
distribution function (CDF) of random variable Xa, b ≜ AT , a, bAR, a, b
can be obtained (see (38)) where P( ⋅ ) is the probability function.
Therefore, the CDF of mutual coherence defined in (26) can be
obtained as

Fμ(μ0) = P(μ Ψ ≤ μ0)
= P( max

a ≠ b
Xa, b ≤ μ0)

≃ ∏
a = 0

PQ − 2
∏

b = a + 1

PQ − 1
FXa, b

μ0 ,

(39)

where the approximation is based on the assumption that Xa,b is
independent for different a and b. Then, with the CDF of mutual
coherence μ(Ψ), we can measure the performance of Algorithm 1
(Fig. 3) via the probability that the mutual coherence of random
TXs and RXs locations is less than the one with optimised
locations. In addition, in the following subsection, the asymptotic
distribution of μ(Ψ) with large M and N will also be given.

5.1 Asymptotical behaviour of the mutual coherence

Since the variables Ba, b(pT , m) and Ba, b(pT , m) defined in (21) and
(22) follow the independent and identical distributions, then, we
define the following variables:

XT , a, b ≜ 1
M ∑

m = 0

M − 1
Ba, b(pT , m) − μT , a, b , (40)

XR, a, b ≜ 1
N ∑

n = 0

N − 1
Ba, b(pR, n) − μR, a, b , (41)

where

μT , a, b = 𝔼pT, m
Ba, b(pT , m)

= ∫ ej2π( f c/c)xT, a, b f (xT , a, b) dxT , a, b = ζxT, a, b
2π

f c
c ,

(42)

FXa, b
(μ0) = P(Xa, b ≤ μ0)

= ∫
0

1∫
0

(μ0/AT, a, b)

f AT, a, b
(AT , a, b) f AR, a, b

(AR, a, b) dAR, a, b dAT , a, b,
(38)
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μR, a, b = 𝔼pR, m
Ba, b(pR, m)

= ∫ ej2π
f c
c xR, a, b f (xR, a, b) dxR, a, b = ζxR, a, b

2π
f c
c

. (43)

ζxT, a, b
2π( f c/c)  and ζxR, a, b

2π( f c/c)  are the characteristic functions
of f (xT , a, b) and f (xR, a, b), respectively.

Therefore, according to Lyapunov's central limit theorem [42],
both XR,a,b and XT,a,b follow the asymptotic complex Gaussian
distribution with large enough M and N, i.e.

XT , a, b ∼ 𝒞𝒩 0, ΓT , a, b, CT , a, b , XR, a, b ∼ 𝒞𝒩 0, ΓR, a, b, CR, a, b
, (44)

where

ΓT , a, b ≜ 𝔼pT, n
Ba, b(pT , n)Ba, b

H (pT , n) = 1,

ΓR, a, b ≜ 𝔼pR, n
Ba, b(pR, n)Ba, b

H (pR, n) = 1,

CT , a, b ≜ 𝔼pT, n
Ba, b(pT , n)Ba, b(pT , n) = ζxT, a, b

4π
f c
c ,

CR, a, b ≜ 𝔼pR, n
Ba, b(pR, n)Ba, b(pR, n) = ζxR, a, b

4π
f c
c ,

and 𝒞𝒩 0, ΓT , a, b, CT , a, b  denotes the zero-mean complex Gaussian
distribution with covariance matrix being ΓT,a,b and relation matrix
being CT,a,b.

Since we have the following linear relationship:

AT , a, b ejβT, a, b = 1
M

XT , a, b + μT , a, b, (45)

AR, a, b ejβR, a, b = 1
N

XR, a, b + μR, a, b, (46)

both AT,a,b ejβT,a,b and AR,a,b ejβR,a,b also follow the joint complex
Gaussian distributions, i.e.

AT , a, b ejβT, a, b ∼ 𝒞𝒩 μT , a, b,
1
M ,

CT , a
M ,

AR, a, b ejβR, a, b ∼ 𝒞𝒩 μR, a, b,
1
N ,

CR, a, b
N .

(47)

With the distribution of AT,a,b ejβT,a,b and AR,a,b ejβR,a,b, the
distribution of Xa,b = AT,a,bAR,a,b can be obtained. However, it is
difficult to obtain the explicit distribution expression of Xa,b.
Therefore, in this paper, we will give an approximation expressed
under the following conditions:

μT , a, b = 0, μR, a, b = 0, CT , a, b = 0, CR, a, b = 0,

which can be guaranteed when the following condition can be
satisfied:

2∥ ta − tb ∥
2
f c ≫ 1. (48)

Then, we have

AT , a, b ejβT, a, b ∼ 𝒞𝒩 0, 1
M , 0 , AR, a, b ejβR, a, b ∼ 𝒞𝒩 0, 1

N , 0

,
(49)

and

Re AT , a, b ejβT, a, b

Im AT , a, b ejβT, a, b
∼ 𝒞𝒩 0

0 , 1
2

1
M , 0

0, 1
M

, (50)

Re AR, a, b ejβR, a, b

Im AR, a, b ejβR, a, b
∼ 𝒞𝒩 0

0 , 1
2

1
N , 0

0, 1
N

. (51)

Therefore, the amplitudes AT,a,b and AR,a,b follow the Rayleigh
distribution:

AT , a, b ∼ Rayleigh 1
2M

, AR, a, b ∼ Rayleigh 1
2N

. (52)

Xa,b is a product between two independent variables with Rayleigh
distribution, and the CDF of Xa,b can be expressed according to
[43]

FXa, b
(x) = 1 − 2MNxK1 2MNx , x ≥ 0, (53)

where K1 ⋅  denotes the modified Bessel functions of the second
kind.

Finally, with M ≫ 0 and N ≫ 0, the CDF of mutual coherence
μ(Ψ) can be obtained

F′μ(μ0) = P(μ Ψ ≤ μ0)
= P( max

a ≠ b
Xa, b ≤ μ0)

≃ 1 − μ′0K1 μ′0
(1/2)PQ(PQ − 1),

(54)

where μ0′ ≜ 2 MNμ0.
In Section 6, we will compare the CDF of μ(Ψ) described by

both (39) and (54), and illustrate the performance of Algorithm 1
(Fig. 3) in decreasing the mutual coherence via optimising the
antennas locations.

6 Simulation results
In this section, we simulate the location performance for multiple
targets, where the antennas locations are optimised, and the CS-
based methods including OMP, FASTA-LASSO and CoSaMP are
adopted. During the simulations, the range resolution is Δ = 1 m,
and we discretise the target area into an 10Δ  × 10Δ area, i.e. P = 10
and Q = 10. The carrier frequency is fc = 1 GHz and the speed of
electromagnetic wave is c = 108 m/s. The number of TXs M is
chosen from 4 to 10, and the number of RXs N is also chosen from
4 to 10.

6.1 Analysis of Algorithm 1 (Fig. 3)

First, the mutual coherence with increasing the antennas number in
Algorithm 1 (Fig. 3) is shown in Fig. 4, where the TX and RX
antennas are added alternatively. As shown in this figure,
increasing the antennas number can decrease the mutual coherence
of dictionary matrix in (9). In addition, the upper and lower bounds
of adding one more TX or RX antenna is also illustrated, where the
upper and lower bounders can be obtained in (28) and (29),
respectively. The obtained mutual coherence for different antennas
is between these upper and lower bounds, and these bounds also
decrease with increasing the antennas number. Therefore,
increasing the antennas number in Algorithm 1 (Fig. 3) is an
effective method to decrease the mutual coherence of dictionary
matrix. 

In Fig. 5, the CDF of mutual coherence is given, where the
empirical results are obtained by the 105 times of simulations, the
theoretical results are obtained by (39), and the asymptotically
theoretical results are obtained by (54) with the TX number M ≫ 0
and the RX number N ≫ 0. As shown in this figure, the CDFs of
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mutual coherence with antennas numbers being M = N = {4,6,8,10}
are given, and the probability P(μ ≤ μ0) is increasing with
increasing the antennas number, which means that we have more
probability to obtain a smaller mutual coherence with more TX and
RX antennas. In addition, to obtain the CDF (39), we assume that
the random variables Xa,b in (38) are independent for different pairs
of a and b. Therefore, there are some differences between the
empirical CDF and the theoretical CDF (39), but these differences
are decreasing with the increasing number of antennas. When M = 
N = 10, the differences are too small, and the theoretical CDF (39)
has a good description of the simulation results. Furthermore, we
also propose (54) to describe the CDF of mutual coherence when
M ≫ 0 and N ≫ 0. Since the range resolution ∥ ta − tb ∥

2
≫ 1/2 f c,

the assumption in (48) can be satisfied easily. When the antennas

number is less, e.g. M = N = 4, the asymptotically theoretical (54)
cannot describe the simulation results well, but when M = N ≥ 8,
the asymptotically theoretical (54) can describe the simulated CDF
well. Therefore, when M = N ≤ 8, the theoretical CDF in (39) is
preferred to describe the CDF of mutual coherence, and when M = 
N > 8, both the theoretical CDF in (39) and the asymptotic one in
(54) can be used. 

With the theoretical and simulated CDF, we can obtain the
probability that the mutual coherence of optimising the TX and RX
locations based on Algorithm 1 (Fig. 3) is less than a given one
with random TX and RX locations. As shown in Fig. 6, the mutual
coherences with optimised TX and RX locations and different
antennas numbers are given. In addition, when the probability that
the mutual coherence with random TX and RX locations is smaller
than μ0 is 10−3, the mutual coherences μ0 are also shown. The
mutual coherences μ0 are obtained by the empirical CDF, the
theoretical CDF (39) and the asymptotically theoretical CDF (54),
respectively. As shown in this figure, the mutual coherences
obtained by optimising the TX and RX locations are smaller than
μ0, which means that the probability that smaller mutual
coherences can be achieved by random TX and RX locations is less
than 10−3. Therefore,Algorithm 1 (Fig. 3) is effective in obtaining
the smaller mutual coherences via optimising TX and RX
locations. 

6.2 Multiple targets localisations performance

In this subsection, the performance of target localisations is given,
where the localisation performance is measured by the probability
of reconstructing the support set of sparse vector x. The target
number is K = 5, and the number of TX antennas is equal to that of
RX antennas, i.e. M = N ∈ {4, 5, …, 10}. The received waveforms
are interfered by AWGN, and the signal-to-noise ratio (SNR) is
SNR ∈ {3, 6, 9} dB. The target localisation performance with both
optimised and random antennas locations is given, where the
localisation performance is realised by averaging the 106 times of
reconstructing sparse vector, and 106 times of antennas positions
are randomly chosen to obtain the non-optimised localisation
performance.

We choose three typical CS reconstruction methods including
FASTA-LASSO, OMP and CoSaMP, where the support recovery
performance is shown in Figs. 7a, 8a and 9a, respectively. In these
three methods, the support recovery performance is all improved
by optimised the TX and RX positions, especially, in the higher
SNR situations (SNR ≥ 6 dB). Moreover, with the increasing the
antennas number, the support recovery performance is also
improved. 

In Figs. 7b, 8b and 9b, the localisation performance of FASTA-
LASSO, OMP and CoSaMP is given, respectively. The localisation
performance is measured by the mean squared error. As shown in
these figures, the localisation performance is consistent with the
sparse reconstruction performance. Therefore, the placement
optimisation can improve both the sparse reconstruction and
localisation performance. In addition, the localisation performance
can be more significantly improved when the MIMO radar system
equips more antennas. Therefore, by optimising the TX and RX
positions with Algorithm 1 (Fig. 3), the target localisation
performance can be improved, especially at high SNR or with more
antennas.

Furthermore, as shown in Fig. 10, we also compared the
proposed method of the placement optimisation with an existing
method proposed in [44], where the radar placement is optimised
according to the Neyman–Pearson detector. In this comparison, the
FASTA-LASSO algorithm is adopted to reconstruct the sparse
vector. Since the placement optimisation is not to maximise the
sparse reconstruction performance in the existing method, the
proposed method achieves better performance in reconstructing the
sparse vector. Therefore, the proposed method is more suitable for
the CS-based target localisation. 

Fig. 4  Mutual coherence with increasing the number of antennas in
Algorithm 1 (Fig. 3)

 

Fig. 5  CDF of mutual coherence μ(Ψ)
 

Fig. 6  Comparison between the mutual coherence optimised by Algorithm
1 (Fig. 3) and the one with random antennas placement
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7 Conclusions
We have addressed the localisation problem for multiple targets in
the distributed MIMO radar system, where the localisation problem
has been established as a sparse reconstruction problem based on
the CS theory. To improve the target localisation performance,

which corresponds to the sparse reconstruction performance in the
CS problem, the placement of both TXs and RXs are optimised by
the proposed iteration algorithm, and the mutual coherence of
dictionary matrix is minimised. Moreover, both the theoretical and
asymptotic distributions of mutual coherence with random

Fig. 7  FASTA-LASSO algorithm
(a) Support recovery performance, (b) Localisation performance

 

Fig. 8  OMP algorithm
(a) Support recovery performance, (b) Localisation performance

 

Fig. 9  CoSaMP algorithm
(a) Support recovery performance, (b) Localisation performance
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antennas placement has also been provided, which can be adopted
to measure the performance improvement in decreasing the mutual
coherence by optimising the TXs and RXs placements. Then,
simulation results have also been given, where typical CS-based
methods are adopted and the performance of targets localisation are
significantly improved by optimising the antennas placement.
Further work will focus on the dynamic optimisation for the
moving radar platforms.
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