
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 67, NO. 12, DECEMBER 2018 11805

Waveform Design for Kalman Filter-Based Target
Scattering Coefficient Estimation in

Adaptive Radar System
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Abstract—The temporal correlation of target can be exploited
to improve the radar estimation performance. This paper studies
the estimation of target scattering coefficients in an adaptive radar
system, and a novel estimation method based on Kalman filter (KF)
with waveform optimization is proposed for the temporally corre-
lated target in the scenario with both noise and clutter. Different
from the existing indirect methods, a direct optimization method
is proposed to design the transmitted waveform and minimize the
mean square error of the KF estimation. Additionally, the wave-
form is optimized subject to the practical constraints including the
transmitted energy, the peak-to-average power ratio, and the tar-
get detection performance. With clutter and noise, the waveform
optimization problem is non-convex. Therefore, a novel two-step
method is proposed and converts the original non-convex prob-
lem into several semidefinite programming problems, which are
convex and can solve efficiently. Simulation results demonstrate
that the proposed KF-based method with waveform optimization
can outperform state-of-art methods and significantly improve the
estimation performance.

Index Terms—Adaptive radar system, Kalman filter, non-
convex optimization, waveform optimization.

I. INTRODUCTION

IN ADAPTIVE radar systems, the transmitted waveforms
can be optimized according to the radar working environ-

ment, so the better detection and estimation performance can
be achieved than that with fixed waveforms [1]–[3]. Usually,
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when the target is large enough to occupy more than one
resolution cells, the echo signals from the different resolu-
tion cells are superimposed. Therefore, it is more appropri-
ate to describe this type of target as an extended target [4]
instead of a point target [5]–[7]. Under the assumption of a
linear time-invariant target, target impulse response (TIR) is
adopted to characterize the extended target [8], [9]. In [10],
[11], this assumption is further extended to a wide sense sta-
tionary uncorrelated scattering (WSSUS) model, where the TIRs
from different resolution cells are uncorrelated and temporally
stationary.

In the adaptive radar systems, the transmitted waveforms can
be optimized with the information of target and clutter to im-
prove the radar performance, and most kinds of literature focus
on the following two scenarios [12]:

1) The statistical information about the target scattering coef-
ficients (TSC) or the clutter scattering coefficients (CSC)
is assumed to be known, such as the power spectral density
(PSD), the subspaces and the covariance matrices. For ex-
ample, the waveform is optimized to maximize the worst-
case signal-to-interference-and-noise ratio (SINR) in the
colocated multiple-input and multiple-output (MIMO)
radar [13], where the cyclic optimization algorithm based
on the rank-one relaxation and the semidefinite program-
ming (SDP) [14] is proposed. The waveform optimization
method based on the TSC subspace is investigated in [15],
[16]. Additionally, to jointly optimize the transmitted
waveform and the receiving filter in the MIMO radar, an
iterative method is proposed to maximize the detection
performance for extended target in [17]. In the scenario
with moving target, the joint optimization method based
on cyclic maximization is also proposed to maximize the
detection performance [18]. With the orthogonal wave-
forms, a weighting matrix is obtained to maximize SINR
in [19].

2) The exact TSC or CSC are assumed to be known dur-
ing the waveform optimization processes. For example,
the transmitted waveforms are optimized in [20] to max-
imize the target detection performance, using a cosine
function to generate the Toeplitz matrix. The waveform
optimization method is also proposed in [21] for the mul-
tiple extended targets with the compressed sensing-based
estimation method. The antenna placements are optimized
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in [22] to improve the target localization performance with
the target information.

For the temporally correlated targets, the Kalman filter (KF)-
based method can be adopted to improve the TSC estimation
performance, but the corresponding method of waveform opti-
mization has not been proposed to improve the estimation per-
formance, especially in the practical scenarios with the clutter
and the waveform constraints [23].

The current optimization methods focus on maximizing the
general parameters such as SINR or the mutual information to
improve the TSC estimation performance [24], [25], but few
methods are studied for the specific estimation methods. Ad-
ditionally, for the practical scenarios, the following constraints
must also be considered in waveform optimization:

1) The constant envelope of the transmitted waveform: it
improves the power efficiency and takes full advantage
of the nonlinear power amplifiers, especially in the multi-
carrier radar systems [26]–[28]. Additionally, a peak-to-
average power ratio (PAPR) is adopted as a relaxed form
of the constant envelope constraint [29].

2) The detection performance: it is based on the constant
false alarm rate (CFAR) detector [30], [31].

3) The energy of transmitted waveform: it is an essential
constraint in the waveform optimization.

However, the waveform optimization for the temporally cor-
related target subject to these constraints has not been stud-
ied in the existing kinds of literature. Therefore, this paper
focuses on improving the KF estimation performance by opti-
mizing the transmitted waveform directly under these practical
constraints.

In this paper, a novel KF-based method with optimized wave-
form is studied to estimate the TSC in an adaptive radar system
with clutter. Different from existing indirect methods, a direct
waveform optimization method is proposed. To minimize the
mean square error (MSE) of the KF estimation at each itera-
tion, we formulate a waveform optimization problem subject
to the constraints of the transmitted energy, the PAPR, and the
detection performance. Since the original problem of waveform
optimization is non-convex and cannot be solved efficiently, a
novel two-step method is proposed to convert it into several
convex problems, which can be solved efficiently by the tool-
boxes. For the first step, an initial optimization waveform is
obtained in the scenario without clutter by converting the origi-
nal non-convex optimization problem into an SDP problem. For
the second step with clutter, an iterative method is proposed to
update this waveform. Finally, the optimized waveform in the
scenario with both noise and clutter is obtained. To summarize,
we make the contributions as follows:

� Radar application: The adaptive radar system is realized
by optimizing the transmitted waveforms with the infor-
mation of target and clutter, and the estimation method is
combined with the corresponding waveform optimization
processes. Different from the general optimization meth-
ods to maximize the SINR or mutual information of the
received signals, the proposed method is a specific and
direct optimization method for the KF-based estimator.

� The direct waveform optimization method: Different from
the existing indirect methods, a direct method is proposed
to optimize the transmitted waveforms for the KF-based
estimator.

� The practical waveform constraints: For the practical con-
sideration, the constraints including the transmitted energy,
the PAPR and the detection performance are considered
during the processes of waveform optimization.

� The method to solve non-convex optimization problem:
With additional constraints, the original waveform opti-
mization method is non-convex, and cannot be solved ef-
ficiently, so a two-step method is proposed to convert the
non-convex problem into several convex ones.

The remainder of this work is organized as follows. In
Section II, the radar system model is given and the method based
on KF is proposed to estimate TSC in the scenario with clutter.
Section III formulates the waveform design as a non-convex
optimization problem, and a two-step method is proposed in
Section IV. Simulation results are given in Section V. Finally,
Section VI concludes the paper.

Notations: Symbols for matrices (upper case) and vectors
(lower case) are in boldface. (·)H , diag{·}, IL , CN (0,R), | · |,
‖ · ‖2, E{·}, Tr{·} and R denote the conjugate transpose (Her-
mitian), the diagonal matrix, the identity matrix of size L, the
complex Gaussian distribution with zero mean and covariance
being R, the absolute value, the �2 norm, the expectation, the
trace of a matrix and the real part, respectively.

II. SYSTEM MODEL

As shown in Fig. 1, the target is described by an extended
model, which can be expressed by either TIR in the time domain
or TSC in the frequency domain. The echo signal from the
target is interfered by that from clutter, which can be described
by either clutter impulse response (CIR) in the time domain
or CSC in the frequency domain. To ensure the consistency of
results in the time domain and frequency domain, the length
of a signal in time domain is M ′ and we extend it to M via
adding zeros, where M ≥ 2M ′ − 1. During the k-th pulse, the
transmitted waveform is denoted as a vector sk ∈ CM ×1, where
M is the length of the discretized signal. Thus, in the scenario
with clutter, the received signal yk ∈ CM ×1 can be obtained in
the frequency domain as

yk = Zk

(
gT ,k + gC

)
+ w, k = 1, 2, . . . (1)

where the transmitted signals are described by a diagonal ma-
trix in the frequency domain Zk � diag{zk} and the diagonal
entries of Zk are from a vector zk � Fsk . The Fourier matrix
F is defined as

F � 1√
M

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 . . . 1
1 e−j2π 1

M . . . e−j2π M −1
M

1 e−j2π 2
M . . . e−j2π

2(M −1)
M

...
...

. . .
...

1 e−j2π M −1
M . . . e−j2π

(M −1) (M −1)
M

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2)
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Fig. 1. The radar system with extended target and clutter.

w denotes the additive Gaussian noise. gT ,k � FhT ,k and gC

�FhC denote the TSC and CSC, respectively; hT ,k ∈CM×1

and hC ∈ CM ×1 denote the TIR and CIR, respectively. Suppose
gT ,k ∼ CN (0,RT ), gC ∼ CN (0,RC ) and w ∼ CN (0,RN ),
where RT , RC and RN denote the covariance matrix of the
target, clutter and noise, respectively. The assumption of gC ∼
CN (0,RC ) is common in radar systems, where RC can be
estimated by the well-developed methods [32], [33].

Considering the extended target with slowly varying TIR, the
TIR has a high correlation with the most recent TIR and less
correlation with the older TIR. Therefore, a classically exponen-
tial correlated model has been proposed to describe the dynamic
character of TIR in time domain [10], [11], [34]

hT ,k = e−Tr /τ hT ,k−1 + uk−1, (3)

where Tr denotes the pulse repetition interval (PRI), τ de-
notes the temporal decay constant describing the temporal
TIR correlation between two neighboring pulses, and uk−1 ∼
CN (0, (1 − e−2Tr /τ )R′

T ) denotes a zero-mean Gaussian vec-
tor with covariance matrix (1 − e−2Tr /τ )R′

T , with R′
T �

F H RT F being the covariance matrix of hT ,k . τ can be es-
timated by the estimation methods including maximum likeli-
hood (ML), Bayes, and minimum mean squared error (MMSE)
estimation.

When the maximum a posteriori probability (MAP)-based
method is adopted to estimate TSC, the estimated TSC at the
k-th radar pulse can be expressed as

ĝT ,k = arg max
gT , k

p
(
gT ,k

∣
∣yk

)
, (4)

where p(gT ,k |yk ) denotes the conditional probability distri-
bution of gT ,k given the received waveform yk . To obtain the
expression of MAP estimation explicitly, the MAP estimation
can be simplified by the complex Gaussian distribution of yk

given the TSC gT ,k with the complex Gaussian distribution. A
function Gx(μ,R) is used to describe the complex Gaussian
distribution of the vector x∼CN (μ,R), and Gx(μ,R) is

defined as Gx(μ,R)�(2π)−M det(R)−1/2e−1/2(x−u)HR−1(x−µ) ,
where M denotes the length of vector x. Then, the MAP can
be written as

ĝT ,k = arg max
gT , k

p
(
gT ,k

)
p
(
yk | gT ,k

)

= arg max
gT , k

GgT , k
(0,RT ) Gyk

(
ZkgT ,k ,RC N

)
, (5)

where RC N � ZkRC ZH
k + RN . After some simplifications,

the estimated TSC at the k-th pulse using the MAP estimator
can be represented as

ĝT ,k = Qkyk , (6)

where the receiving filter of the MAP estimation is defined as

Qk �
(
ZH

k R−1
C N Zk + R−1

T

)−1
ZH

k R−1
C N . (7)

Note that RC N can be rewritten as RN in the scenario without
clutter [10], [11].

To exploit the temporal correlation of the extended target, a
method based on KF is now proposed to estimate the TSC in the
frequency domain, where the scenarios both with and without
clutter are considered. For the initial step of KF estimation, the
pulse index k is set to be 1, and the TSC can be estimated by
the MAP estimator during the first pulse interval as

ĝT ,1 = Q1y1. (8)

The estimation error can be measured by the MSE matrix. When
the MAP-based method is used at the first step (k = 1) of the
KF estimation, the initial MSE matrix can be calculated by

P 1|1 = E
{(

ĝT ,1 − gT ,1

) (
ĝT ,1 − gT ,1

)H
}

= Q1

(
Z1RT ZH

1 + RC N

)
QH

1 − Q1Z1RT

− RT ZH
1 QH

1 + RT . (9)

Then, we iteratively perform the following procedures for k =
2, 3, . . . , in Algorithm 1. In the KF estimation, the transmit-
ted waveform can be optimized according to Section III. In
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Algorithm 1: The KF-Based Method to Estimate TSC.
1: Input: received signal yk , maximum number of

pulse K.
2: Initialization: obtain ĝT ,1 from (6), and obtain P 1|1

from (9).
3: for k = 2 to K do
4: ĝT ,k |k−1 = e−Tr /τ ĝT ,k−1|k−1.
5: P k |k−1 = e−2Tr /τ P k−1|k−1 + (1 − e−2Tr /τ )RT .
6: ĝT ,k = Qkyk .
7: Φk � P k |k−1Z

H
k (QkRC N + QkZkP k |k−1Z

H
k )−1.

8: ĝT ,k |k = ĝT ,k |k−1 + Φk (ĝT ,k − QkZk ĝT ,k |k−1).
9: P k |k = P k |k−1 − ΦkQkZkP k |k−1.

10: Optimize the radar waveform sk using the method
proposed in the following Section III.

11: end for
12: Output: the estimated TSC ĝT ,k |k .

the following section, the waveform optimization method sub-
ject to the constraints of transmitted energy, PAPR and detec-
tion probability will be given to improve the KF estimation
performance.

III. OPTIMIZATION OF THE TRANSMITTED WAVEFORM

During the k-th iteration, the TSC estimation performance
of the KF-based method can be measured by the trace of MSE
matrix in Step 1 of Algorithm 1, i.e., f(sk ) = Tr{P k |k}. In this
paper, the transmitted waveform sk is optimized to minimize the
estimation error f(sk ), and then to improve the estimation per-
formance. During the waveform optimization processes, both
the transmitted energy and PAPR constraints are considered to
maximize the efficiency of the power amplifier. Since the target
estimation relies on the presence of target, the target detection
performance must be also considered. Therefore, an optimiza-
tion problem subject to the constraints of transmitted energy,
PAPR, and the target detection performance can be obtained
during the k-th pulse

min
sk

f (sk )

s.t. ‖sk‖2
2 ≤ Es

PAPR (sk ) ≤ ζ

Pd (Pf a) ≥ ε. (10)

In the above optimization problem, Es denotes the transmitted
energy constraint, PAPR(sk ) ≤ ζ denotes the PAPR constraint
to control the power dynamics, and Pd(Pf a) ≥ ε denotes the
detection probability constraint using a CFAR detector, where
Pd and Pf a denote the detection probability and the false alarm
rate, respectively.

To solve the waveform optimization problem (10), the ob-
jective function and constraints will be given explicitly and
simplified. First, the objective function f(sk ) in (10) can be

written as

f (sk )
(a)
= Tr

{
P k |k−1 − ΦkQkZkP k |k−1

}

(b)
= Tr

{
P k |k−1 − P k |k−1Z

H
k QH

k

(
QkRC N QH

k

+QkZkP k |k−1Z
H
k QH

k

)−1
QkZkP k |k−1

}

(c)
= Tr

{(
P−1

k |k−1 + R−1
C −

(
RC + RC ZH

k R−1
N ZkRC

)−1
)−1}

. (11)

In (11), the equation (a) is obtained based on (9), the equation
(b) is obtained by substituting Step 1 in Algorithm 1 into (a), and
the equation (c) is obtained by the Woodbury identity1 [35]. In
the practical radar systems, the classical methods of parameter
estimation can be used to estimate the parameter τ . Since this
parameter estimation does not have any effect on the waveform
optimization, so the estimation processes for the parameter τ
have been ignored in this paper.

Then, the constraints in (10) will be simplified as follows.
PAPR is defined as

PAPR (sk ) � 10 log10

(

M
max1≤m≤M |sk,m |2

sH
k sk

)

, (12)

where M denotes the length of waveform sk , and sk,m denotes
the m-th entry of sk . Therefore, the PAPR constraint can be
rewritten as

max
1≤m≤M

|sk,m |2 ≤ 10
ζ
10 Es/M � ζ ′Es. (13)

Next, the constraint of the target detection probability will be
calculated and simplified. In the target detection problem, the
echo signal can be written as

H1 : yk = Zk

(
gT ,k + gC

)
+ w,

H0 : yk = ZkgC + w, (14)

where H1 and H0 denote the presence and absence of target,
respectively. According to the estimated TSC ĝT ,k , the distri-
bution of echo signal is

yk |H0 ∼ CN {0,RC N } ,

yk |H1 ∼ CN {
ZĝT ,k ,RC N

}
. (15)

When a likelihood ratio test is used to detect the target, we have

p (yk |H1)
p (yk |H0)

=
Gyk

(
ZĝT ,k ,RC N

)

Gyk
(0,RC N )

H1

�θ, (16)

where θ denotes the detection threshold. After some simplifica-
tions, the target detection problem can be written as

d (yk ) � yH
k R−1

C N Zk ĝT ,k

H1

�
H0

θ. (17)

1(A + CBCH )−1 = A−1 − A−1C(B−1 + DC)−1D. where D �
CH A−1.
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In the CFAR detector, the false alarm rate is calculated by

Pf a � p (d (yk ) > θ|H0)

= Q

(
θ
/√(

Zk ĝT ,k

)H
R−1

C N Zk ĝT ,k

)
, (18)

where the Q function is defined as Q(x) � 1
2π

∫∞
x exp

(−μ2/2) dμ. Thus, the threshold of the CFAR detection in (17)
can be obtained as

θ (Pf a) = Q−1 (Pf a)
√(

Zk ĝT ,k

)H
R−1

C N Zk ĝT ,k . (19)

Therefore, the detection probability with the false alarm rate
Pf a is

Pd (Pf a) � p (d (yk ) > θ (Pf a)|H1)

= Q

(
Q−1 (Pf a) −

√(
Zk ĝT ,k

)H
R−1

C N Zk ĝT ,k

)
.

(20)

Since Q(·) is a monotone decreasing function, the detection
probability constraint in (10) based on (20) can be written as

zH
k Ĝ

H

k R−1
C N Ĝkzk ≥ ε′ (21)

where Ĝk � diag{ĝT ,k}, and ε′ � (Q−1(Pf a) − Q−1(ε))2.
Now, with the simplified objective function and constraints,

the explicit formula of the optimization problem (10) can be
obtained as

min
sk

{
Tr

[(
P−1

k |k−1 + R−1
C

− (
RC + RC ZH

k R−1
N ZkRC

)−1
)−1]}

s.t. ‖sk‖2
2 ≤ Es

max
1≤m≤M

|sk,m |2 ≤ ξ′Es

zH
k Ĝ

H

k R−1
C N Ĝkzk ≥ ε′. (22)

However, this optimization problem is non-convex, and cannot
be solved efficiently [36], [37]. Thus, we propose a novel two-
step method to convert the original non-convex problem into
several convex ones, which can be solved efficiently.

IV. TWO-STEP METHOD

Different from the existing indirect methods, a two-step di-
rect method is proposed in this paper to solve the non-convex
optimization problem in (22). As shown in Fig. 2, for the first
step, an initial radar waveform regardless of clutter is obtained
by relaxing the original problem into a convex SDP problem.
For the second step, an iterative method is proposed to obtain
a term and update the initial radar waveform obtained from the
first step, so that a solution of the original non-convex problem
(22) can be obtained. The SDP problem can be solved efficiently
by the optimization toolboxes, such as CVX [38], [39].

Fig. 2. The flowchart of the two-step method to optimize the transmitted
waveform in the scenario with clutter and noise.

Algorithm 2: Waveform Optimization Without Clutter.

1: Define W k � sksH
k and W k 
 0.

2: Convert the non-convex problem (23) for the scenario
without clutter into a convex problem (24).

3: Obtain W ∗
k from (24).

4: if rank{W ∗
k} = 1 then

5: The optimized waveform without clutter s̄k can be
obtained by the decomposition W ∗

k = s̄k s̄H
k .

6: else
7: W ∗

k =
∑

i λiviv
H
i . Denote vmax as the eigenvector

corresponding to the largest eigenvalue λmax .
8: Obtain s̄k from the optimization problem (32) with

vmax .
9: end if

10: Output: the optimized waveform s̄k .

A. Waveform Design Regardless of Clutter

The waveform optimization method in the scenario without
clutter is described in Algorithm 2, and more details are given
as follows.

Regardless of clutter which is essentially to set RC N = RN

in (11) and (17), the non-convex optimization problem in (22)
can be written as

min
sk

{
Tr

[(
P−1

k |k−1 + ZH
k R−1

N Zk

)−1
]}

s.t. ‖sk‖2
2 ≤ Es
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max
1≤m≤M

|sk,m |2 ≤ ξ′Es

sH
k F H Ĝ

H

k R−1
N ĜkFsk ≥ ε′, (23)

where the covariance matrix of noise RN can be estimated from
the secondary data having the same properties with the primary
data [6], [40]. With the definition of a semidefinite matrix W k �
sksH

k , the optimization problem (23) can be rewritten as

min
W k

{
Tr

[(
P−1

k |k−1 + FW kF H ◦ R−1
N

)−1
]}

s.t. Tr {W k} ≤ Es

diag {W k} ≤ ξ′Es

Tr
{

Ĝ
H

k R−1
N ĜkFW kF H

}
≥ ε′

rank {W k} = 1

W k 
 0, (24)

where ◦ denotes the Hadamard product. With the rank constraint
rank{W k} = 1, the optimization problem (24) is non-convex,
so a SDP problem [14] can be relaxed by removing the rank
constraint as

min
W k

{
Tr

[(
P−1

k |k−1 + FW kF H ◦ R−1
N

)−1
]}

s.t. Tr {W k} ≤ Es

diag {W k} ≤ ξ′Es

Tr
{

Ĝ
H

k R−1
N ĜkFW kF H

}
≥ ε′

W k 
 0, (25)

which is convex and can be solved efficiently by the optimization
toolbox, such as CVX. The solution of the SDP problem (25) is
denoted W ∗

k .
If rank{W ∗

k} = 1, then W ∗
k is a solution of (24), mean-

while the corresponding solution of (23) can be obtained via the
decomposition W ∗

k = s̄k s̄H
k , where s̄k denotes the optimized

waveform without clutter.
Otherwise, if rank{W ∗

k} > 1, W ∗
k has the following eigen-

value decomposition W ∗
k =

∑r
i=1 λiviv

H
i , where r denotes the

number of nonzero eigenvalues, λi denotes the i-th eigenvalue,
and vi denotes the corresponding eigenvector. Then, the eigen-
vector corresponding to the maximal eigenvalue |λmax | of W ∗

k

is vmax . Since λmaxvmaxv
H
max can be used to approximate the

waveform matrix W ∗
k by [14]

W ∗
k ≈ λmaxvmaxv

H
max , (26)

the energy normalized vector
√

Esvmax/|vmax‖2 can be used
to approximate the optimized waveform s̄k at the k-th pulse
without clutter.

However, the eigenvector approximation does not satisfy the
constraints in the optimization problem (23), so the transmitted
waveform must satisfy the constraints and also approach the
eigenvector vmax . Additionally, considering that the constraint
of the target detection probability in (23) is non-convex, we

Fig. 3. The eigenvalue ratio probability of the matrix U.

define

U � F H Ĝ
H

k R−1
N ĜkF . (27)

In Fig. 3, we show the probability of the eigenvalue ratio
r � |θ′|/|θmax |, where θmax and θ′ denote the largest and sec-
ond largest eigenvalues, respectively. The eigenvalue ratios are
obtained by realizing the matrix U according to the different
types of target and noise, where the entries of both RT and
RN follow the uniform distribution. Since the largest eigen-
value is much larger than the others with high probability, the
matrix U can be approximated using the maximum eigenvalue
decomposition

U ≈ θmaxwmaxw
H
max , (28)

where wmax denotes the eigenvector of U corresponding to
the largest eigenvalue θmax . Then, the constraint of the target
detection probability can be approximated by

sH
k Usk ≈ sH

k θmaxwmaxw
H
maxsk ≥ ε′. (29)

Therefore, the target detection constraint can be rewritten as
∣
∣sH

k wmax
∣
∣2 ≥ ε′/θmax . (30)

Then, a more strict constraint can be used in the optimization
problem (24) as the detection constraint

R{
sH

k wmax
} ≥

√
ε′/θmax , (31)

which is affine and convex.
If rank{W ∗

k} > 1, the optimized waveform s̄k for the sce-
nario without clutter can be obtained by the following convex
optimization problem

min
sk

(−sH
k vmax

)

s.t. ‖sk‖2
2 ≤ Es

max
1≤m≤M

|sk,m |2 ≤ ξ′Es

R{
sH

k wmax
} ≥

√
ε′/θmax , (32)
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Algorithm 3: The Method to Obtain the Correction Term
and Fix the Optimized Waveform.

1: Input: optimized waveform s̄k for the scenario without
clutter, minimum coefficient εα , maximum number of
iterations J .

2: Initialization: correction term a∗
k,0 = 0, corrected

waveform s̄k as s∗
k,0 = s̄k + a∗

k,0, correction coefficient
α = 1.

3: for j = 1 to J do
4: With the transmitted waveform s∗

k,j , obtain the
steepest descent direction dk,j from (33).

5: Obtain the correction term a∗
k,j from (44).

6: s∗
k,j = s∗

k,j−1 + a∗
k,j (‖a∗

k,j‖2
2 ≤ αEs).

7: if f(s∗
k,j ) ≤ f(s∗

k,j−1) then
8: α = α/2.
9: end if

10: if α ≤ εα then
11: break.
12: end if
13: end for
14: Output: the optimized waveform s∗

k,j for the k-th KF
estimation.

where the objective function is the simplified result of the angle
between sk and vmax . Since vmax is normalized, the optimized
waveform sk satisfies ‖sk‖2

2 = Es .

B. Waveform Design Regarding Clutter

Based on the previous subsection, the optimized waveform
s̄k in the scenario without clutter has been obtained. With the
presence of clutter, an iterative method is proposed to obtain a
correction term ak , which can fix the initially optimal waveform
s̄k , and the optimized waveform s∗

k can be achieved as the
solution of (22). The iterative method to obtain the correction
term is described in Algorithm 3, and more details are given as
follows.

The steepest descent direction dk,j at Step 3 of Algorithm 3
can be obtained by the following convex optimization problem

dk,j = arg min
d

z

s.t. �f
(
s∗

k,j

)T
d ≤ z

�gi

(
s∗

k,j

)T
d ≤ z, i = 1, 2, 3

− 1 ≤ dm ≤ 1,m = 1, 2, . . . ,M (33)

where the objective function f(s∗
k,j ) with clutter is given in

(11). We further define gi(s∗
k,j ) as

g1
(
s∗

k,j

)
�
∥
∥s∗

k,j

∥
∥2

2
− Es (34)

g2
(
s∗

k,j

)
� ξ′Es − max

1≤m≤M

∣
∣s∗k,j,m

∣
∣2 (35)

g3
(
s∗

k,j

)
� s∗H

k,jF
H Ĝ

H

k R−1
C N ĜkFs∗

k,j − ε′, (36)

where s∗k,j,m is the m-th entry of s∗
k,j .

The solution of problem (33) is the steepest descend di-
rection [41], and the constraints −1 ≤ dm ≤ 1 are adopted to
guarantee a finite optimal direction. Therefore, the derivation of
objective function �f(s∗

k,j ) is given in (37), shown at the bottom

of this page, where z∗
k,j � Fs∗

k,j , Z∗
k,j � diag{z∗

k,j}, z∗k,j,m

is the m-th entry of z∗
k,j , Δmn is a zero matrix except the entry

at the m-th row and n-th column being 1, and the matrix X is
defined as

X � P−1
k |k−1 + R−1

C − (
RC + RC Z∗H

k,jR
−1
N Z∗

k,jRC

)−1
.

(38)
Thus, we have

�f
(
s∗

k,j

)
=

⎛

⎝
∂f

(
s∗

k,j

)

∂z∗k,j,1

,
∂f

(
s∗

k,j

)

∂z∗k,j,2

, . . . ,
∂f

(
s∗

k,j

)

∂z∗k,j,M

⎞

⎠F .

(39)
The derivations for the constraints can be also obtained as

�g1
(
s∗

k,j

)
=

∂g1

(
s∗

k,j

)

∂s∗
k,j

= 2s∗
k,j , (40)

�g2
(
s∗

k,j

)
=

∂g2

(
s∗

k,j

)

∂s∗
k,j

= p, (41)

where the m∗-th entry of p is 2|s∗k,j,m | with m∗ = arg max1≤
m≤M |s∗k,j,m |2, and the rest entries are zeros. Additionally,
�g3(s∗

k,j ) can be approximated by

�g3
(
s∗

k,j

)
=

∂g3

(
s∗

k,j

)

∂s∗
k,j

≈ g′, (42)

where the m-th entry of g′ can be obtained as

g′m �
g3(s∗

k,j + δg ,m ) − g3(s∗
k,j )

‖δg ,m‖2
, (43)

and δg ,m is a vector with the m-th entry being 0 < δg � 1 and
other entries being zeros.

∂f
(
s∗

k,j

)

∂z∗k,j,m

= −Tr

{

X−2T ∂
(
RC + RC Z∗H

k R−1
N Z∗

kRC

)−1

∂z∗k,j,m

}

= Tr
{

X−2T
(
I + Z∗H

k,jR
−1
N Z∗

k,jRC

)−1
(Δmm R−1

N Z∗
k,j + Z∗H

k,jR
−1
N Δmm

) (
I + RC Z∗H

k,jR
−1
N Z∗

k,j

)}
(37)
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At Step 5 of Algorithm 3, the correction term a∗
k,j can be

calculated by maximizing the correlation with the steepest de-
scent direction dk,j . Then, the following optimization problem
can be obtained

a∗
k,j = arg min

a

(−aH
k dk,j

)

s.t. ‖a‖2
2 ≤ αEs

s′ = s∗
k,j−1 + a

‖s′‖2
2 − Es ≤ 0

ξ′Es − max
1≤m≤M

|s′m |2 ≥ 0

R
{

s
′H wmax

}
−
√

ε′/θmax ≥ 0, (44)

where the normalized dk,j and the optimized a∗
k,j with ‖a∗

k,j‖2
2

= αEs simplify the objective function from the angle between
ak and dk,j to (−aH

k dk,j ).
Finally, the optimized waveform can be obtained as s∗

k,j−1 +
a∗

k,j , and the convergence of the proposed iterative method to
iteratively fix the waveform s∗

k,j−1 by an optimized correction
term a∗

k,j will be given in the following simulation section.

C. Complexity Analysis

When an interior-point algorithm is adopted to solve the
SDP problem (25), the computational complexity is roughly
O(M 4.5) [42]. Additionally, since both (32) and (33) are the
linear programming problems, both the computational com-
plexities are O(M 3/ log M) [43]. Therefore, the totally com-
putational complexity of the proposed two-step method can be
roughly obtained as O(M 4.5 + 2M 3/ log M).

D. Cramér-Rao Bound of the Estimated TSC

In the TSC estimation, the estimation performance is bounded
by Cramér-Rao bound, so the Cramér-Rao bound will be given
in this subsection. With the given transmitted waveform sk and
TSC gT ,k , the likelihood function of the received signal can be
obtained as

p(yk |gT ,k ) = Gyk
(ZkgT ,k ,RC N ). (45)

Therefore, we have

∂ ln p(yk |gT ,k )
∂gT ,k

= ZH
k R−1

C N (yk − ZkgT ,k ), (46)

and the Fisher information matrix is

I(gT ,k ) � E

{(
∂ ln p(yk |gT ,k )

∂gT ,k

)(
∂ ln p(yk |gT ,k )

∂gT ,k

)H
}

= ZH
k

(
R−1

C N

)H
Zk . (47)

Therefore, the Cramér-Rao bound of the estimated TSC can be
obtained as

B � I(gT ,k )−1 =
[
ZH

k

(
R−1

C N

)H
Zk

]−1
. (48)

TABLE I
SIMULATION PARAMETERS

The variance of the estimated TSC is bounded by the Cramér-
Rao bound, and for the i-th TSC gT ,k,i , we have var(gT ,k,i) ≥
Bi,i , where Bi,i is the i-th column and i-th row entry of B.

V. SIMULATION RESULTS

In this section, the simulation results are shown, and the sim-
ulation parameters are given in Table I. The covariance matrices
of both TSC and noise are chosen by the uniform random distri-
bution, and the covariance matrices for running one realization
are shown in Fig. 4.

In Fig. 5, the PAPR comparison of the optimized waveform
with random waveforms is given. Since PAPR is one of the con-
straints for optimization, the optimized waveforms with or with-
out clutter can achieve 3 dB PAPR. To make fair comparisons
regarding estimation performance with the same PAPR con-
straint, only the random waveforms satisfying 3 dB PAPR are
selected for the comparisons, as shown in Fig. 5. Therefore, all
the transmitted waveforms used in our scenario satisfy the PAPR
constraint. In Fig. 6, the PSD of an optimized waveform is given,
and the PSDs of both target and clutter are also given. As shown
in this figure, the optimized waveform transmits more energy
in the spectrum with a relatively higher ratio between the target
PSD and clutter PSD, so the SCNR of the received signal can be
improved.

We simulate the TSC estimation in the scenario without
clutter. As shown in Fig. 7, we show the estimation perfor-
mance for different SNRs, where the KF estimator with both
non-optimized [10], [11], [44] and optimized waveforms are
adopted. The estimation performance is measured by the nor-
malized MSE, which is defined as

q
(
ĝT ,k , gT ,k

)
�

∥
∥ĝT ,k − gT ,k

∥
∥2

2∥
∥gT ,k

∥
∥2

2

. (49)

As shown in Fig. 7, the KF estimator works at SNR = −20 dB,
−15 dB and −10 dB, respectively. By exploiting the temporal
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Fig. 4. The covariance matrices of the scattering coefficients and noise.

Fig. 5. The PAPR of transmitted waveforms.

Fig. 6. The PSD of optimized waveform.

correlation, the KF estimator outperforms the single pulse based
MAP estimator. The decreasing SNR reduces the KF estimation
performance both with and without waveform optimization, but
the proposed method of the waveform optimization still works
well and outperforms the non-optimized waveform.

Fig. 7. KF estimation at different SNR without clutter.

Fig. 8. Iteration error of correction term.

When we consider the waveform optimization in the scenario
with clutter, the iterative method has been proposed to fix the
optimized waveform in the scenario without clutter. The con-
vergence of proposed iterative method is illustrated in Fig. 8 at
SCR = −14 dB, −15 dB and −16 dB. The maximum number
of iterations is set to be J = 50, and the minimum correction
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Fig. 9. The estimated TSC with different methods.

Fig. 10. TSC estimation performance of KF method.

coefficient is εα = 10−4 in Algorithm 3. As shown in Fig. 8,
when the iteration number is 50, the objective function in (11),
which describes the KF estimation performance with clutter,
coverages to a steady state. This steady state has lower estima-
tion error than the initially optimal waveform regardless of the
clutter.

For the second step of the proposed waveform optimization
method, the iterative method is used to fix the initially opti-
mal waveform, so this operation must be able to eliminate the
performance reduction caused by the clutter. We give the sim-
ulation results in Fig. 10, where the KF estimator is used. We
first show the normalized MSE with the optimized waveform in
the scenario without clutter, which has the best estimation per-
formance. Then, the clutter is introduced, and the normalized
MSE is improved from 0.17 to 0.37 at the 30-th pulse, where
the same optimized waveform is utilized. By using the iterative
method to fix this optimized waveform, the normalized MSE is

reduced to 0.25, so the clutter is eliminated by 32% using the
additional correction term a∗

k,j in (44).
Then, in the scenario with clutter, we first show the estimated

TSC with different methods in Fig. 9, where the simulation pa-
rameters are the same as Table I. As shown in this figure, the
KF-based method with the optimized waveform achieves the
best estimation performance. Additionally, to give a clear illus-
tration, we also show the normalized MSE performance with
different simulation parameters in Fig. 11, where the MAP es-
timator, the KF estimator and the KF estimator with optimized
waveform are compared. In Fig. 11 a, we have SCR = −15 dB,
SNR = −10 dB and τ = 1 s. The KF estimation performance is
improved by optimizing the transmitted waveform at the 3, 10,
20, 30, 40-th pulses. At the 30-th pulse, the normalized MSE
is reduced by 35% using the optimized waveform in the KF
estimator. Additionally, in Fig. 11 b, we randomly choose the
covariance matrices of the scattering coefficients and noise at
each simulation, and average the normalized MSE. The pro-
posed estimation method also achieves the best performance.
Then, since the lower correlation time τ reduces the KF estima-
tion performance, we reduce the correlation time to τ = 0.5 s
to show the comparison more clearly in Fig. 11 c, where
the proposed method also achieves the best estimation perfor-
mance. Moreover, we realize the TSC estimation methods with
higher SCR and SNR in Fig. 11 d, where the better estimation
performance than lower SCR and SNR is achieved. The wave-
form optimization also improves the TSC estimation perfor-
mance, as shown in Fig. 11 d. Therefore, the proposed waveform
method can work well in the scenarios both with and without
clutter.

Additionally, we also illustrate the SCNR in Fig. 12. In
this paper, the objective function is to minimize the MSE
of estimated TSC instead of SCNR. However, by optimizing
the transmitted waveform, better SCNR performance can also
be achieved.

The existing methods about the waveform optimization are
proposed to maximize the general parameters of received sig-
nals, such as the mutual information or SINR. Therefore, we
compare the two-step optimization method with the method
proposed in [9]. The method in [9] is a general method to im-
prove the energy of echo signal from the target, and the wave-
form optimization method proposed in this paper is a specific
method to improve the KF estimation performance. Therefore,
as shown in Fig. 13, the better performance can be achieved by
our method. Moreover, the proposed method is also compared
with the water-filling method [10], [11], [24], and the constraints
of PAPR and detection performance are not considered in the
water-filling method. The proposed method in this paper op-
timizes the transmitted waveform directly to reduce the MSE
in KF estimation, but the water-filling method is designed to
improve the SCR of received signal instead of the estimation
performance. Therefore, as shown in Fig. 14, the better estima-
tion performance can be achieved using the proposed method in
the scenario either with or without clutter.

In Fig. 15, the estimation performance with the Cramér-
Rao bound is given. It is shown in Fig. 15 that, as the pulse
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Fig. 11. TSC estimation performance with clutter.

Fig. 12. The SCNR of the received signal with waveform optimization.

number increases, the estimation performance also improves
and approaches the Cramér-Rao bound. Moreover, the Cramér-
Rao bound can be lower when the transmitted waveform is

Fig. 13. The estimation performance compared with the method in [9].

optimized. Therefore, the waveform design method proposed in
this paper can be efficiently used in the KF to achieve better
estimation performance.
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Fig. 14. The estimation performance compared with the water-filling method.

Fig. 15. The Cramér-Rao bound of the estimation methods.

VI. CONCLUSION

We have investigated the KF-based estimation method with
waveform optimization in the scenario with both noise and clut-
ter. At each KF iteration, to minimize the MSE in TSC estima-
tion, the novel two-step method has been proposed to directly
optimize the radar waveform subject to the practical constraints
including the transmitted energy, the PAPR, and the target detec-
tion performance. The optimized waveform has been obtained
by converting the original non-convex optimization problem
into several convex problems. The simulation results demon-
strate that the KF-based estimation method with optimized
waveform outperforms state-of-art methods. Further work will
focus on the waveform optimization for the radar systems with
moving platform.
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