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Abstract—The sparse channel estimation which sufficiently
exploits the inherent sparsity of wireless channels, is capable
of improving the channel estimation performance with less pilot
overhead. To reduce the pilot overhead in massive MIMO system-
s, sparse channel estimation exploring the joint channel sparsity
is first proposed, where the channel estimation is modeled as
a joint sparse recovery problem. Then the block coherence of
MIMO channels is analyzed for the proposed model, which shows
that as the number of antennas at the base station grows, the
probability of joint recovery of the positions of nonzero chan-
nel entries will increase. Furthermore, an improved algorithm
named block optimized orthogonal matching pursuit (BOOMP)
is also proposed to obtain an accurate channel estimate for the
model. Simulation results verify our analysis and show that the
proposed scheme exploring joint channel sparsity substantially
outperforms the existing methods using individual sparse channel
estimation.

Index Terms—Compressed sensing (CS); sparse channel esti-
mation; massive MIMO; large-scale MIMO;

I. Introduction

In order to improve the data rate as well as the reliability
of wireless systems, the multi-antenna technology, termed as
multiple-input multiple-output (MIMO), has been extensively
investigated in the last two decades. In a typical multi-user
MIMO system, a base station (BS) equipped with some
antennas simultaneously communicates with several users each
equipped with a single antenna. Recently, it has been shown
that as the number of BS antennas grows to be infinity, the
effect of additive noise and rayleigh fading is negligible and
a very high data rate can be achieved [1]. Therefore, we may
construct a massive MIMO or large-scale MIMO system by
equipping the BS with orders of magnitude more antennas,
e.g., 128, which is even larger than the number of users that
the BS serves [2]. In this way, the BS can sufficiently exploit
the spatial degree of freedom to simultaneously communicate
with several users using the same temporal and frequency
resource [3]. The researchers from Rice University establish
a BS equipped with 64 antennas serving 15 users, which is
demonstrated to achieve up to 6.7 fold capacity gains while
using a mere 1/64th of transmission power [4].

One of the challenges in massive MIMO systems is the pilot
overhead that grows linearly with the number of channels to be
estimated. In massive MIMO systems, the number of wireless
links and channels is very large, leading to the proliferation
of pilot overhead and thus the reduced resource for data. To
reduce the pilot overhead, one potential choice is to explore
the inherent sparsity of wireless channels and to use the sparse

channel estimation [5], [6], [7]. Wireless channel is essentially
sparse, where only a small number of channel coefficients are
nonzero. By applying recently emerged compressed sensing
(CS) technique, sparse channel estimation can be used to
estimate the channel impulse response (CIR) based on the
received and transmitted pilot symbols. Compared to the
least squares (LS) and minimum mean square error (MMSE)
methods, sparse channel estimation is capable of improving
the channel estimation performance and reducing the pilot
overhead [8], [9], [10], [11]. In [5], distributed compressive
channel estimation and feedback schemes are considered for
frequency-division duplex (FDD) massive MIMO Systems.
In [12], superimposed pilot design for downlink FDD massive
MIMO systems is proposed based on structured CS. In [13],
sparse channel estimation with structured CS is proposed for
multi-input single-output (MISO) systems. In [14], based on
the idea that the degree of freedom of the channel matrix
is smaller than the number of free parameters, a low-rank
matrix approximation is proposed and solved via semidefi-
nite programming (SDP). In [15], uplink channel estimation
exploring joint channel sparsity is investigated for massive
MIMO systems.

It is shown in [16] that the CIR from different BS antennas
to the same user antenna shares a common support, because
the time of arrival (ToA) is similar while the paths amplitudes
and phases are distinct. In other words, the nonzero positions
of different CIRs are the same, exhibiting the joint sparsity.
So it is beneficial to exploit the joint sparsity so that the
number of pilots for channel estimation can be substantially
reduced. In this paper, we first consider the sparse channel
estimation exploring the joint channel sparsity, where the
channel estimation is modeled as a joint sparse recovery
problem. Then the block coherence of MIMO channels is
analyzed for the proposed model, which shows that as the
number of BS antennas grows, the probability of joint recovery
of the positions of nonzero channel entries will increase.
Furthermore, an algorithm named block optimized orthogonal
matching pursuit (BOOMP) is also proposed to obtain a
reliable solution to this model.

The remainder of this paper is organized as follows. Sec-
tion II provides the system model for sparse channel es-
timation exploiting joint sparsity, which is then formulated
as a joint sparse recovery problem. Section III analyzes the
block coherence for the proposed model. In Section IV, an
algorithm named BOOMP is proposed to get a solution to the
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model. Simulation results are provided in Section V. Finally,
Section VI concludes this paper.

The notations used in this paper are defined as follows.
Symbols for matrices (upper case) and vectors (lower case)
are in boldface. (·)T , (·)H , diag{·}, IL, ∥a∥2, CN and ∅, denote
the matrix transpose, conjugate transpose (Hermitian), the
diagonal matrix, the identity matrix of size L, ℓ2-norm of a
vector a, the complex Gaussian distribution and the empty set,
respectively.

II. SystemModel
As shown in Figure 1, we give a three-cell massive MIMO

system. We illustrate three different configuration of BS anten-
nas, e.g., linear antenna configuration on an edge of a building,
rectangular antenna configuration at a wall of a building, and
cylindrical antenna configuration on a tower. Therefore, it is
flexible to deploy BS for different scenarios in practice. With
the large number of antennas, the energy can be focused
on extremely sharp beams, where the beamforming will be
more efficient and the spatial degree of freedom can be fully
exploited.

cylindrical

rectangular

linear

beam

Fig. 1. Three different configuration of BS antennas in massive MIMO
systems.

To overcome the frequency-selective fading and improve the
spectral efficiency, orthogonal frequency division multiplexing
(OFDM) is usually adopted for downlink transmission in cur-
rent wireless standards, e.g., LTE-A [17]. OFDM transforms
the frequency-selective wireless channel into several parallel
flat-fading narrowband subchannels. Each subchannel only
needs a single-tap equalizer, and therefore the high complexity
associated with the long equalizer to combat inter-symbol
interference (ISI) is substantially mitigated.

We consider a massive MIMO system including a BS e-
quipped with M antennas and several users each equipped with
a single antenna. We use OFDM for downlink transmission.
Suppose the total number of OFDM subcarriers is N. From N
subcarriers, K(0 < K ≤ N) subcarriers are selected to transmit
pilot symbols for pilot-assisted channel estimation. In FDD
systems, each user first performs channel estimation for each
downlink channel and then feeds back the quantized CSI to the

BS. With the downlink CSI, the BS designs the beamforming
vector for each user so that the spatial degree of freedom in
the massive MIMO system can be fully exploited. In order to
distinguish M different downlink channels, the BS has to use
M orthogonal pilots, either in time domain, frequency domain,
or sequence domain. According to current wireless standard-
s [17], frequency-orthogonal pilots are usually employed. With
the increased number of BS antennas, i.e., growing M, these
orthogonal pilots will occupy increased resource, resulting in
reduced resource for data transfer. So in the following, we will
explore the joint sparsity of downlink channels and reduce the
pilot overhead.

The positions of pilot subcarriers make up a pilot pattern,
which is a positive integer vector. Suppose the pilot pattern
used by the ith BS antenna is p(i), i = 1, 2, . . . ,M. The pilot
patterns used by different antennas are frequency-orthogonal
to each other, i.e., p(i) ∩ p( j) = ∅ if i , j, where ∩ represents
the intersection of two sets. Suppose the OFDM symbol
transmitted by the ith BS antenna is x(i), i = 1, 2, . . . ,M.
The pilot vector transmitted by the ith BS antenna can be
denoted as x(i)(p(i)), i = 1, 2, . . . ,M. After the user receives
an OFDM symbols y, it can extract the received pilot vectors
y(p(i)), i = 1, 2, . . . ,M, corresponding to different transmit
pilot vectors, because the transmit pilot vectors are orthogonal
in the frequency domain. To ease the notation, we define
y(i) , y(p(i)), i = 1, 2, . . . ,M. We then formulate the channel
estimation problem as

y(i) = D(i)F(i)h(i) + η(i), i = 1, 2, . . . ,M (1)

where D(i) , diag{x(i)(p(i))} denotes a diagonal square ma-
trix, with the diagonal entries being the entries of x(i)(p(i));
η(i) ∼ CN(0, σ2IK) denotes the noise term of the ith downlink
channel; F(i) is a K by L submatrix indexed by p(i) in row and
[1, 2, . . . , L] in column from a standard N by N DFT matrix;
and h(i) = [h(i)(1), h(i)(2), . . . , h(i)(L)]T denotes the CIR of the
ith downlink channel. Due to the inherent sparsity of wireless
channels, most entries of h(i) are zero, and the number of the
nonzero entries of h(i) equals the number of multipath in the ith
downlink channel. It is shown in [16] that the CIR of different
downlink channels shares a common support, because the ToA
from different transmit antennas to the same receive antenna
is similar while the path amplitudes and phases are distinct.
In other words, the nonzero positions of h(i) are the same for
i = 1, 2, . . . ,M, while their nonzero coefficients are different.
We define the measurement matrix A(i) , D(i)F(i), then (1)
can be rewritten as

y(i) = A(i)h(i) + η(i), i = 1, 2, . . . ,M (2)

which is essentially to use y(i) and A(i) to estimate h(i) under
the perturbation of η(i). In order to explore the joint sparsity
of MIMO downlink channels, we define w as a stack vector

w , [wT
1 ,w

T
2 , . . . ,w

T
L ]T (3)

where wl , [h(1)(l), h(2)(l), . . . , h(M)(l)]T denotes the lth block
of w, l = 1, 2, . . . , L. Since the nonzero positions of h(i) are the
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same for i = 1, 2, . . . ,M, the entries of wi will be either all zero
or all nonzero, exhibiting the block sparsity. Correspondingly,
we define a stack vector of received pilots as

z , [zT
1 , z

T
2 , . . . , z

T
K]T (4)

where
zl , [y(1)(l), y(2)(l), . . . , y(M)(l)]T (5)

denotes the lth block of z, l = 1, 2, . . . ,K. In the same way,
we define a stack vector of noise terms as

n , [nT
1 , n

T
2 , . . . , n

T
K]T (6)

where
nl , [η(1)(l), η(2)(l), . . . , η(M)(l)]T (7)

denotes the lth block of n, l = 1, 2, . . . ,K. We generate a
new measurement matrix B based on a matrix E. Given any
matrix E with K rows and L columns, we substitute the lth-
row jth-column entry of E, denoted as E(l, j), by a diagonal
matrix diag{A(1)(l, j), A(2)(l, j), . . . , A(M)(l, j)}, l = 1, 2, . . . ,K,
j = 1, 2, . . . , L. We thus construct a block-diagonal matrix
B with MK rows and ML columns. The sparse channel
estimation exploring joint sparsity can be finally formulated
as

z = Bw + n. (8)

Recent works in CS show that the sparse recovery performance
of (8) is determined by two factors, including the structure of
B and the sparse recovery algorithm, which will be discussed
in Section III and Section IV, respectively.

III. Analysis of Block Coherence

Assuming that each column of B in (8) is normalized.
This assumption is reasonable because we can normalize B
by simply decomposing it into a normalized matrix Q and
a diagonal matrix G so that B = QG. And after the sparse
recovery, we can obtain the solution to the original problem
by multiplying the results with G−1.

We define the coherence of A(i), i = 1, 2, . . . ,M for (2) as

µ(A(i)) = max
l,k

∣∣∣(a(i)
l )H a(i)

k

∣∣∣ (9)

where a(i)
l denotes the lth column of A(i), l = 1, 2, . . . , L. To

improve the sparse recovery performance of (2), it is better to
minimize µ(A(i)) [8].

We represent B in (8) as a concatenation of blocks Bl, l =
1, 2, . . . , L, as

B ,
[

b1, b2, . . . , bM︸           ︷︷           ︸
B1

, bM+1, bM+2, . . . , b2M︸                    ︷︷                    ︸
B2

, . . . ,

bLM−M+1, bLM−M+2, . . . , bLM︸                               ︷︷                               ︸
BL

]
(10)

where b j denotes the jth column of B, j = 1, 2, . . . , LM.
It’s observed that the columns within each block of B are
orthogonal to each other, meaning that the rank of each block
is M.

Similarly, we define the coherence of B as

µ(B) = max
l,k
|bH

l bk |. (11)

Considering that the sparse w in (8) exhibits block sparsity,
we further define the block coherence of B according to [18]
as

µB(B) =
1
M

max
l,k
ρ(BH

l Bk) (12)

where we denote the spectrum norm of a given matrix R as

ρ(R) , λ1/2
max(RH R), (13)

with λmax(RH R) representing the largest eigenvalue of the
positive-semidefinite matrix RH R.

Theorem 1: For sparse channel estimation exploring the
joint sparsity which is formulated in (8), we have

µB(B) =
1
M
µ(B). (14)

Proof:
From (8) and (10), we observe that

µ(B) = max
i=1,2,...,M

µ(A(i)). (15)

According to (12), we have

µB(B) =
1
M

max
l,k
ρ(BH

l Bk)

=
1
M

max
l,k
ρ
(
diag
{(

a(1)
k
)H a(1)

l ,
(
a(2)

k
)H a(2)

l , . . . ,
(
a(M)

k
)H a(M)

l

})
=

1
M

max
l,k
λ1/2

max

(
diag
{∣∣∣∣(a(1)

k
)H a(1)

l

∣∣∣∣2, ∣∣∣∣(a(2)
k
)H a(2)

l

∣∣∣∣2, . . . ,∣∣∣∣(a(M)
k
)H a(M)

l

∣∣∣∣2})
=

1
M

max
l,k

max
i=1,2,...,M

∣∣∣∣(a(i)
k
)H a(i)

l

∣∣∣∣
=

1
M

max
i=1,2,...,M

max
l,k

∣∣∣∣(a(i)
k
)H a(i)

l

∣∣∣∣
=

1
M

max
i=1,2,...,M

µ(A(i)) =
1
M
µ(B). (16)

If M grows to be infinity, µB(B) will be zero, which means
that the blocks Bl, l = 1, 2, . . . , L, in (10) will be orthogonal to
each other, leading to the unique recovery of blocks. So as the
number of BS antennas grows, the probability of joint recovery
of the positions of nonzero channel entries will increase. In
this way, we can reduce the pilot overhead and therefore leave
more resource for data transfer in the massive MIMO system.

IV. Block Optimized OrthogonalMatching Pursuit
(BOOMP)

Existing methods for solving (8) can be roughly divided
into two classes, including convex optimization algorithms
and greedy algorithms. The convex optimization algorithms
include BP algorithms such as ℓ1-LS, YALL1, SpaRSA and
other optimization solvers. The greedy algorithms construct a
sparse solution by iteratively selecting the matrix columns and
eventually forming a linear combination of them closest to the
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original signal, and they include methods such as orthogonal
matching pursuit (OMP), CoSaMP, subspace pursuit and Ho-
motopy. However, all of these algorithms did not exploit the
joint sparsity.

Now we propose a BOOMP algorithm exploring the joint
sparsity for the proposed model in (8). Note that the BOOMP
algorithm presented in this work is based on the optimized
OMP algorithm (OOMP) [19] instead of the basic OMP
algorithm.

Algorithm 1-Block Optimized Orthogonal Matching Pursuit
1: Input: B, z, M, L, σ.
2: Initializations: r⇐ z. T ⇐ 0. Λ⇐ ∅
3: while ∥r∥2 > Mσ and T ≤ L
4: T ⇐ T + 1.
5: Obtain J via (17).
6: Λ⇐ Λ ∪ {J}.
7: r⇐ z − BΛ(BH

ΛBΛ)−1BH
Λ z.

8: end
9: Output: ĥ

(i)
Λ ⇐ (AH

ΛAΛ)−1 AH
Λ y(i), i = 1, 2, . . . ,M.

At first, we initialize a residue vector r ⇐ z and a loop
counter T ⇐ 0. At each iteration, we obtain an index of the
nonzero entry of h(i) by

J = arg max
j∈{1,2,...,L}\Λ

∥∥∥(BH
j B j)−1BH

j r
∥∥∥

2 (17)

and keep J in an active set Λ. Since h(i) shares a common
support for i = 1, 2, . . . ,M, we only need one active set to keep
the common support. We denote the submatrix indexed by Λ
in blocks from B and the submatrix indexed by Λ in columns
from A as BΛ and AΛ, respectively. We iteratively update
the residue r by the LS estimation in step 7 of Algorithm 1,
where (BH

ΛBΛ)−1BH
Λ is the pseudo inverse of BΛ. Once the

power of residue is comparable to the noise or the number of
iterations is greater than L, we stop the iterations. Meanwhile
we output the estimated CIR as ĥ

(i)
, with the coefficients of

nonzero entries denoted as ĥ
(i)
Λ , i = 1, 2, . . . ,M.

V. Simulation Results

We consider a massive MIMO system including a BS
equipped with M = 8 antennas. The BS uses N = 256
OFDM subcarriers for downlink transmission, where K = 16
subcarriers are selected to transmit pilot symbols. QPSK is
employed for modulation. The length of the CIR vector is set
to be L = 60. The number of channel multipath is set to be
S = 12, which means that there are only S = 12 nonzero
entries in the CIR vector. Since different channels share a
common support [16], the positions of nonzero entries in the
CIR vector are the same while the coefficients of these nonzero
entries are different.

A. With the fixed positions of nonzero entries of CIR

We first consider the fixed positions of nonzero entries of
CIR. The positions of nonzero entries are fixed to be [2, 13,

21, 24, 29, 33, 41, 42, 43, 53, 54, 60]. In order to estimate the
downlink channel, each BS antenna transmits a pilot symbol
and the user will simultaneously receive M = 8 different
pilot symbols, meaning that the user has to estimate M = 8
channels. In order to distinguish different downlink channels,
frequency-orthogonal pilots are used. In Table I, we provide
M = 8 frequency-orthogonal pilots via pilot optimization [8].
Each pilot in Table I is used by a BS antenna for downlink
sparse channel estimation.

TABLE I
Frequency-orthogonal pilots for sparse channel estimation in the massive

MIMO system.

Positions of pilot subcarriers
1st antenna 8, 40, 48, 52, 72, 82, 99, 142, 145,

154, 158, 161, 183, 209, 212, 230
2nd antenna 9, 41, 49, 53, 73, 83, 100, 143, 146,

155, 159, 162, 184, 210, 213, 231
3rd antenna 10, 42, 50, 54, 74, 84, 101, 144, 147,

156, 160, 163, 185, 211, 214, 232
4th antenna 17, 25, 47, 56, 59, 63, 75, 111, 115,

130, 141, 149, 153, 174, 200, 250
5th antenna 12, 34, 55, 64, 67, 109, 112, 148, 173,

215, 222, 233, 238, 241, 249, 252
6th antenna 2, 15, 45, 58, 62, 66, 96, 103, 107,

132, 165, 181, 186, 189, 204, 206
7th antenna 18, 22, 33, 68, 76, 80, 88, 91, 95,

116, 133, 167, 198, 205, 229, 246
8th antenna 7, 79, 92, 117, 120, 152, 168, 180, 187,

197, 219, 223, 239, 243, 251, 255

Now we compare the individual sparse channel estimation
using OMP and the joint sparse channel estimation using
BOOMP. Since K ≤ 2S , the individual sparse channel esti-
mation can not succeed, from information theoretical point of
view, because K = 16 equations are not enough to solve 24
unknown variables including S = 12 unknown positions and
S = 12 unknown coefficients of nonzero entries. As shown in
Table II, the positions of nonzero entries individually estimated
for h(i), i = 1, 2, . . . , 8, named as individual for ith antenna,
are all incorrect. Then we use 2 of 8 antennas, 4 of 8 antennas,
6 of 8 antennas and all 8 antennas, respectively, for joint
sparse channel estimation, named as joint for x antennas with
x = 2, 4, 6, or 8. It is seen from Table II that we can not
obtain the true positions exactly as those of the original CIR
unless we use all x = 8 antennas for joint sparse recovery,
which verifies the analysis of block coherence in Section III.
Moreover, the estimation performance will further increase if
we use more antennas and explore the joint sparsity.

We further compare the performance of individual sparse
channel estimation and joint sparse channel estimation in terms
of mean square error (MSE). We define the MSE as

MS E =
1
V

V∑
i=1

∥∥∥h(i) − ĥ
(i)∥∥∥2

2

∥h(i)∥22
. (18)

where ĥ
(i)

is the estimate of h(i) and V is the number of
all possibilities for the averaging. For example, in individual
sparse channel estimation, V = 8. In joint sparse channel
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TABLE II
Comparisons of individual sparse recovery and joint sparse recovery in terms

of estimated nonzero positions for downlink channels.

Positions of nonzero entries
True positions 2,13,21,24,29,33,41,42,43,53,54,60

Individual for 1st antenna 2,8,15,21,24,33,41,42,47,53,54,60
Individual for 2nd antenna 1,2,13,24,35,40,44,46,50,53,54
Individual for 3rd antenna 2,5,11,13,20,24,33,37,42,53,54,55,60
Individual for 4th antenna 1,8,13,17,24,27,33,41,43,46,53,60
Individual for 5th antenna 5,6,13,15,20,21,24,29,31,32,38,41,51,60
Individual for 6th antenna 2,7,12,21,24,26,33,41,42,49,54,60
Individual for 7th antenna 3,8,10,17,21,26,36,41,42,43,50,55,59
Individual for 8th antenna 2,6,15,18,20,21,24,29,32,41,49,56,60

Joint for 2 antennas 8,9,10,12,13,15,21,25,36,43,44,50,56,60
Joint for 4 antennas 2,10,12,13,19,21,24,41,47,50,53,54,57,60
Joint for 6 antennas 3,6,7,13,14,23,29,33,40,41,42,43,51,53,60
Joint for 8 antennas 2,13,21,24,29,33,41,42,43,53,54,60

0 5 10 15 20 25 30
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−3

10
−2

10
−1

10
0

SNR / dB

M
S

E

 

 

Individual sparse channel estimation for each BS antenna 

Using 2 of 8 antennas for joint sparse channel estimation  

Using 4 of 8 antennas for joint sparse channel estimation

Using 6 of 8 antennas for joint sparse channel estimation

Using all 8 antennas for joint sparse channel estimation

Fig. 2. Comparisons of individual sparse channel estimation and joint sparse
channel estimation in terms of MSE with the fixed positions of nonzero entries
of CIR.

estimation using 2 of 8 antennas, V =
(

8
2

)
= 28. It is seen

from Figure 2 that the joint estimation using BOOMP notably
outperforms the individual estimation using OMP. Moreover,
we can further improve the MSE performance by employing
more BS antennas for joint sparse channel estimation, which
shows that our scheme is beneficial for massive MIMO sys-
tems.

We also evaluate the pilot reduction of joint sparse channel
estimation, supposing that the individual sparse channel esti-
mation and joint sparse channel estimation achieve the same
MSE performance. The results show that when the number
of pilots increases up to K = 28, the MSE performance
of the individual sparse channel estimation and joint sparse
channel estimation is the same. Therefore, the pilot reduction
of (28 − 16)/16 = 75% can be achieved.

B. With random positions of nonzero entries of CIR

Now we consider the random positions of nonzero entries
of CIR. For MIMO channel realization where the positions of
nonzero entries of CIR are randomly generated, we execute the
routine described in the previous subsection. In this way we
repeat it 1000 times and make an average of them. As shown
in Figure 3, the joint estimation using BOOMP outperforms
the individual estimation using OMP. Moreover, as the number
of BS antennas for joint sparse channel estimation increases,
the MSE can be further reduced.

0 5 10 15 20 25 30

10
−2

10
−1

10
0

SNR / dB

M
S

E

 

 

Individual sparse channel estimation for each BS antenna

Using 4 of 8 antennas for joint sparse channel estimation

Using all 8 antennas for joint sparse channel estimation

Fig. 3. Comparisons of individual sparse channel estimation and joint sparse
channel estimation in terms of average MSE with random positions of nonzero
entries of CIR.

VI. Conclusions

In this paper, we have investigated the sparse channel
estimation based on CS for massive MIMO systems. We
have proposed a system model for sparse channel estimation
exploring the joint channel sparsity. We have analyzed the
block coherence for the proposed model, which has shown
that as the number of BS antennas grows, the probability of
joint recovery of the positions of nonzero channel entries will
increase. We have also proposed an algorithm named BOOMP
to get a solution to the model. Simulation results have verified
our analysis and shown that the proposed sparse channel es-
timation exploring joint sparsity substantially outperforms the
existing methods using individual sparse channel estimation.
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