
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 66, NO. 2, FEBRUARY 2017 941

Estimation of Extended Targets Based on
Compressed Sensing in Cognitive Radar System

Peng Chen, Student Member, IEEE, Chenhao Qi, Senior Member, IEEE,
Lenan Wu, and Xianbin Wang, Senior Member, IEEE

Abstract—In this paper, the ranges and velocities of multiple
extended targets are estimated by exploiting the target sparsity
in the cognitive radar system. Different from the point targets
in the traditional compressed sensing (CS) radar, the parameters
of extended targets are expressed and estimated by using a novel
CS-based model. Since the echo signals from extended targets are
the convolutions between the transmitted waveform and target
impulse responses (TIRs), the dictionary matrices in the proposed
cognitive radar for all extended targets must be first established
in the CS-based reconstruction algorithm. Then, the target pa-
rameters are estimated by reconstructing the nonzero entries
of a sparse vector. To further improve the performance of CS
reconst-ruction, a novel two-step method is proposed to minimize
the mutual coherence of the dictionary matrix by optimizing the
transmitted waveform. Simulation results demonstrate that the
estimation performance of the extended targets is significantly
improved by optimizing the transmitted waveform.

Index Terms—Compressed sensing (CS)-based radar system,
delay–Doppler plane, multiple extended targets, waveform
optimization.

I. INTRODUCTION

THE compressed sensing (CS) theory has been widely
applied in many different fields, including radar systems,

wireless communications, and image processing [1], [2]. With
the CS theory, a sparse signal can be reconstructed from far
fewer measurements than that required in traditional sampling
theory [3]–[6]. The relative Doppler shifts and delays between
the transmitted and received echoes are commonly adopted
to measure the target velocities and ranges in radar systems,
which can be represented by the corresponding points in a
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delay–Doppler plane. Therefore, by exploiting the target spar-
sity in this plane, the CS-based reconstruction algorithms are
adopted to estimate these target parameters [7].

In the CS radar with point targets, the same estimation
performance can be achieved by far fewer measurements than
that required in the traditional radars [8]. For example, the
CS-based multiple-input–multiple-output (MIMO) radar is pro-
posed in [9], where the high-resolution estimations about the
target range, angle, and velocity are achieved by a narrow-
band step frequency waveform. However, the CS-based method
has not been proposed to estimate the ranges and velocities of
multiple extended targets. Therefore, in this paper, we propose a
novel CS-based radar system to exploit the sparsity of extended
targets in the delay–Doppler plane.

On the other hand, cognitive radar as the future trend of
the radar system has been widely investigated in recent years
due to its improved performance and adaptability in different
operation environment [10]–[12]. Generally, there are three
critical elements in the cognitive radars [10]:

1) the intelligent signal processing based on the radar oper-
ation environment;

2) the feedback between the receiver and transmitter;
3) the preservation information in echo waveform.

To further improve the estimation, detection, and tracking per-
formances of cognitive radar, the transmitted waveform is opti-
mized according to the radar working environment [13]–[16].
In the existing studies, waveform optimization is mainly fo-
cused on maximizing the following two metrics [17]–[22]:

1) the mutual information between the echo waveform and
extended target;

2) the signal-to-interference-and-noise ratio (SINR) of echo
waveform.

However, it remains challenging to design CS-based cognitive
radar system particularly for the detection of multiple targets.
Both the optimization methods and objective functions in the
CS radar are different from those in the traditional radars. Fur-
thermore, both transmitted waveform and sensing matrix can be
optimized to further improve the reconstruction performance
of the CS radar [23] in achieving the cognitive operational
capability. In most cases, the sensing matrix follows the sub-
Gaussian distribution, resulting in a high probability that satisfy
the restricted isometry property (RIP) [3]. Thus, the waveform
optimization has been the primary method to improve the CS-
based reconstruction performance, which is measured by the
RIP of the dictionary matrix. However, in the cognitive radar,
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the method to improve the performance of CS reconstruction
by optimizing the transmitted waveform for multiple extended
targets has yet to be proposed.

It has been shown that obtaining the RIP is a nondeterminis-
tic polynomial-time (NP)-hard problem, and mutual coherence
is proposed as an alternative of RIP [24]. To minimize the
mutual coherence of the dictionary matrix for point targets,
several methods have been proposed by optimizing the trans-
mitted waveform [25]. For example, in [26], the power among
antennas to improve the target position and velocity estimation
performance is optimized; in [27], better target localization
performance in the angle–Doppler–range space is achieved by
minimizing the mutual coherence and improving the signal-to-
interference ratio. However, for extended targets, neither the
CS-based model nor the waveform optimization method has
been proposed.

In this paper, we investigate the range and velocity esti-
mation problem for multiple extended targets and propose a
CS-based radar model to exploit the sparsity of extended tar-
gets in the delay–Doppler plane. Different from traditional CS
radar of which the dictionary matrix only contains the delays
and Doppler shifts of the originally transmitted waveform,
the proposed CS radar adopts novel dictionary matrices for
multiple extended targets. Additionally, the sparse vector is re-
constructed by the CS-based method, where the nonzero entries
indicate the corresponding target parameters. To minimize the
mutual coherence of the dictionary matrix, we also propose a
novel two-step method for optimizing the transmitted wave-
form. In the first step, the waveforms are individually optimized
for each extended target through an iterative algorithm. In the
second step, the weight vector is optimized to combine the
output waveforms in the first step.

The organization of this paper is as follows. In Section II,
the radar system with multiple extended targets is described,
and a novel CS-based system model is formulated in the
delay–Doppler plane. In Section III, a novel method of wave-
form optimization is proposed to minimize the mutual coher-
ence of the dictionary matrix. Simulation results are given in
Section IV, and Section V discusses the relationship between
the number of targets and that of measurements. Section VI
concludes this paper.

The notations used in this paper are defined as follows.
Symbols for vectors (lower case) and matrices (upper case)
are in boldface. IN , CN (0,R), (·)T , (·)H , diag{·}, ∗, �·�,
and ‖ · ‖2 denote the N ×N identity matrices, the complex
Gaussian distribution with zero mean and covariance being R,
the transpose, the conjugate transpose (Hermitian), the diagonal
matrix, the convolution, the floor function, and the �2 norm,
respectively.

II. RADAR SYSTEM MODEL WITH

MULTIPLE EXTENDED TARGETS

A. Received Signal

In [7] and [28], the CS-based model has been studied to
describe the point targets, where the echo waveforms from
targets are the delays or Doppler shifts of the originally trans-
mitted waveform. However, when targets are large enough to

Fig. 1. Radar system model with extended targets.

occupy more than one resolution cell, it is more appropriate
to be described by extended targets [29]. As shown in Fig. 1,
there are L extended targets that are described by the target
impulse responses (TIRs) [10]–[14]. For the lth extended target,
the velocity, range, and TIR are denoted by vl, Dl, and hl(t),
respectively. Then, the echo waveform from the lth target can
be obtained as

gl(τl, fD,l, t) = hl(t− τl) ∗ s(t− τl)e
j2πfD,lt (1)

where ∗ denotes the convolution operation, s(t) (t ∈ [0, T ))
denotes the transmitted waveform, t denotes the continuous
time, T denotes the pulse duration, τl = 2Dl/c denotes the
delay, fD,l = (2vl/c)fC denotes the Doppler frequency caused
by target movement, fC denotes the carrier frequency, and c
denotes the waveform speed. Therefore, the received signal can
be expressed as the superposition of the echo waveforms from
all targets

r(t) =
L−1∑
l=0

gl(τl, fD,l, t) + n(t) (2)

where n(t) denotes the additive white Gaussian noise (AWGN).
For simplicity, the continue time signal r(t) is expressed in

the form of discrete vector. Since both delay and Doppler shift
are contained in r(t), the received signal is simplified by the
following two steps.

1) Delay: With only delay τl, the waveform gl(τl, 0, t) is
sampled with sampling frequency fS and can be ex-
pressed in a vector form as follows:

gl(τl, 0) =
[
0Nτl

, gT
l ,0NR−Nτl

−N

]T
(3)

where gl � gl(0, 0) denotes the vector form of gl(0, 0, t)
with the length being N = �Tfs�, 0Nτl

denotes a zero
vector with the length being Nτl = �τlfS�, and NR de-
notes the length of g(Dl, 0).

2) Doppler frequency: With only Doppler frequency fD,l,
the waveform gl(0, vl, t) is sampled with the sampling
frequency being fS and can be expressed in a vector
form as

gl(0, fD,l) = EN (fD,l)gl (4)

where the diagonal matrix EN (fD,l) ∈ CN×N is
defined as

EN (fD,l)�diag

{
e
j2π

fD,l
fS , e

j2π
2fD,l
fS , . . . , e

j2π
NfD,l

fS

}
.

(5)
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Fig. 2. Multiple extended targets in the delay–Doppler plane.

Denoting hl ∈ CN×1 as the vector form of hl(t), a convolu-
tion matrix can be expressed as

H l �

⎛
⎜⎜⎜⎜⎜⎝

hl(0) hl(N − 1) . . . hl(1)
hl(1) hl(0) . . . hl(2)

...
...

. . .
...

hl(N − 2) hl(N − 3) . . . hl(N − 1)
hl(N − 1) hl(N − 2) . . . hl(0)

⎞
⎟⎟⎟⎟⎟⎠

(6)

where hl(i) (i = 0, 2, . . . , N − 1) is the ith entry of hl. There-
fore, with both delay and Doppler frequency, the waveform
g(τl, fD,l, t) can be expressed in the vector form as

gl(τl, fD,l) = ENR
(fD,l)gl(Dl, 0)

= M (fD,l)D(τl)H ls (7)

where D(τl) � [0T
Nτl

×N , IN ,0T
(NR−N−Nτl

)×N ]T , 0Nτl
×N de-

notes an Nτl ×N matrix with all entries being zeros, s ∈
CN×1 denotes the vector form of s(t), and M (fD,l) �
ENR

(fD,l).
Finally, the vector form of the received signal in (2) can be

obtained as follows:

r =

L∑
l=1

gl(τl, fD,l) + n (8)

where n ∼ CN
(
0, σ2

nINR

)
denotes the AWGN noise.

B. CS-Based System Model

As shown in Fig. 2, the lth extended target with delay
τl and Doppler frequency fD,l corresponds to a point in
the delay–Doppler plane. Since the targets are sparse in
the discretized delay–Doppler plane, a novel CS-based
model is proposed here to describe the extended targets.
Denote P and Q as the number of delay and Doppler
frequency bins, respectively. The delay and Doppler frequency
are respectively discretized into (0, 1, . . . , P − 1)Δτ and
(0, 1, . . . , Q− 1)ΔfD , where Δτ and ΔfD are the delay
and Doppler frequency resolutions, respectively. Then, the
overcomplete dictionary matrix for each extended target can be
established by collecting all the echo waveforms with different

delays and Doppler frequencies. For the lth extended target,
the dictionary matrix can be expressed as

Al �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

gT
l (0 ·Δτ, 0 ·ΔfD)

gT
l (0 ·Δτ, 1 ·ΔfD)

...
gT
l (0 ·Δτ, (Q− 1) ·ΔfD)

...
gT
l (1 ·Δτ, 1 ·ΔfD)

...
gT
l ((P − 1) ·Δτ, (Q − 1) ·ΔfD)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

= KT
[
IPQ ⊗ (H ls)

T
]T

(9)

where ⊗ denotes the Kronecker product, and

K �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

DT (0 ·Δτ)MT (0 ·ΔfD)

DT (0 ·Δτ)MT (1 ·ΔfD)
...

DT (0 ·Δτ)MT ((Q − 1) ·ΔfD)
...

DT (1 ·Δτ)MT ((Q − 1) ·ΔfD)
...

DT ((P − 1) ·Δτ)MT ((Q − 1) ·ΔfD)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10)

Thus, the echo waveform in (7) can be rewritten as

gl(τl, fD,l) = Alxl (11)

where xl denotes a sparse vector with length being P ×Q.
Note that the nonzero entries of xl represent the scattering
coefficients, and the index of the nonzero entry corresponds to
a pair of target delay and Doppler frequency.

Collecting the dictionary matrices for all extended targets,
the following dictionary matrix can be obtained as follows:

A � [A1,A2, . . . ,AL] =

⎡
⎢⎢⎢⎢⎢⎢⎣

[
IPQ ⊗ (H1s)

T
]
K[

IPQ ⊗ (H2s)
T
]
K

...[
IPQ ⊗ (HLs)

T
]
K

⎤
⎥⎥⎥⎥⎥⎥⎦

T

= KT

⎡
⎢⎢⎢⎣
(IPQ ⊗H1)
(IPQ ⊗H2)

...
(IPQ ⊗HL)

⎤
⎥⎥⎥⎦ (IPQ ⊗ s). (12)

Thus, the received signal in (8) can be rewritten as

r =
L∑

l=1

Alxl + n = Ax+ n (13)

where x � [xT
1 , . . . ,x

T
L]

T
denotes a sparse vector, with the

length being W � PQL.
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Fig. 3. Block diagram of the proposed two-step method to optimize the transmitted waveform.

When a sensing matrix Φ ∈ RM×NR is adopted to measure
the received signal r, a compressed signal can be obtained as

y = Φr = ΦA︸︷︷︸
Ψ

x+ Φn︸︷︷︸
η

(14)

where Ψ � [Ψ1,Ψ2, . . . ,ΨL], and Ψl � ΦAl. Generally, the
entries of Φ follow the Gaussian or random ±1 distribution
[30]. By exploiting the sparsity of x, very few measurements
are required to reconstruct the sparse vector x, i.e., M 	 NR.

III. WAVEFORM OPTIMIZATION

A. Mutual Coherence

To improve the performance of sparse reconstruction from
the measured signal y, a novel method is proposed here to
optimize the transmitted waveform s. When Ψ satisfies the
RIP, recent advances in CS show that x can be reconstructed
from y with a high probability. However, for a given matrix,
there is no existing method with a polynomial complexity to
check whether a matrix satisfies RIP. Thus, according to [31]
and [32], the mutual coherence of Ψ is adopted as an alternative
method to describe the reconstruction performance. The mutual
coherence is defined as

μ (Ψ) � max
i
=j

{ ∣∣ΨH(i)Ψ(j)
∣∣

‖Ψ(i)‖2 ‖Ψ(j)‖2

}
(15)

where Ψ(i) denotes the ith jth column of Ψ (i ∈
{1, 2, . . . ,W}).

To minimize μ(Ψ), the transmitted waveform is optimized to
minimize the off-diagonal entries of the following matrix [30]:

G � ΨHΨ = AHΦHΦA ≈ AHA. (16)

The inequality in (16) is due to the fact that Φ follows the stan-
dard Gaussian distribution implying that ΦHΦ approximates
an identity matrix. Then, μ (Ψ) in (15) can be approximated as

μ(Ψ) ≈ μ(G) � max
i
=j

{
Gij√
GiiGjj

}
(17)

where Gij denotes the (i, j)th entry of G.

B. Waveform Optimization

As shown in Fig. 3, a novel two-step method is proposed to
optimize the transmitted waveform and to minimize the mutual
coherence of the dictionary matrix. In the first step, the mutual
coherence for each extended target is individually minimized,
and the optimized waveforms are obtained. In the second step, a
weight vector is obtained by another iteration method. Then, for
multiple extended targets, the finally transmitted waveform is
obtained by combing the optimized waveforms in the first step
with the optimized weight vector. The details are given as
follows.

1) First Step (Individual Optimization): For the lth extended
target, the following result can be obtained from (9) and (16):

Gl � ΨH
l Ψl = (IPQ ⊗H ls)

H(KKH)T [IPQ ⊗ (H ls)] .

Therefore, the waveform design for the lth target can be rep-
resented by an optimization problem under the transmit power
constraint, i.e.,

min
s

μ (Gl)

s.t. ‖s‖22 ≤ Es (18)

where Es denotes the maximum transmitted power. We define
a diagonal matrix G̃l with the diagonal entries being the same
with Gl. If the columns of Ψ are orthogonal to each other, all
the off-diagonal entries in Gl will be zero, leading Gl to be
G̃l. Therefore, to minimize μ (Ψ), the correlation between the
columns of Gl must be as less as possible. Then, the following
equivalent optimization problem can be obtained

min
s

‖Gl − G̃l‖max

s.t. ‖s‖22 ≤ Es (19)

where ‖A‖max � maxi,j{|Aij |} denotes the maximum ab-
solute value among all the entries of A.

Since the optimization problem (19) is nonconvex and cannot
be solved efficiently, Equation (19) can be converted into [33]

min
s

‖Gl − G̃l‖F

s.t. ‖s‖22 ≤ Es (20)
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where the Frobenius norm is defined as ‖A‖F �√∑
i

∑
j |Aij |2. To solve (20), an iterative method is proposed

as follows:

1) Since all the diagonal entries of both Gl and G̃l are
nonnegative, G̃l can be decomposed as

G̃l = G̃
′H

l UH
l U lG̃

′
l

where G̃
′
l � diag{

√
G11,

√
G22, . . . ,

√
GNN}, and U l

is a unitary matrix with UH
l U l = I . Note that Gl =

ΨH
l Ψl according to (18), and (20) can be converted to

min
U l,s

f(U l, s)

s.t. ‖s‖22 ≤ Es

where f(U l, s) � ‖Ψl −U lG̃
′
l‖F .

2) Substituting (18) into f(U l, s), we have

f(U l, s) =
∥∥∥KT [IPQ ⊗ (H ls)]−U lG̃

′
l

∥∥∥
F
.

3) For a given waveform s, the unitary matrix U l minimiz-
ing f(U l, s) is

U ∗
l = U l,1U

H
l,2

where U l,1 and UH
l,2 are unitary matrices satisfying [34]

KT [IPQ ⊗ (H ls)] G̃
′−1

l = U l,1ΣlU
H
l,2.

4) After obtaining U ∗
l , we have

f(U ∗
l , sl) =

∥∥∥KT [IPQ ⊗ (H ls)]−U ∗
l G̃

′
l

∥∥∥
F

=
∥∥∥K ′(H ls)− vec

{
U ∗

l G̃
′
l

}∥∥∥
2

where vec(·) denotes a column vector by stacking the
columns of a matrix together, and

K ′ �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M(0 ·ΔfD)D(0 ·Δτ)
...

M ((Q − 1) ·ΔfD)D(0 ·Δτ)
...

M ((Q − 1) ·ΔfD)D(1 ·Δτ)
...

M ((Q− 1) ·ΔfD)D ((P − 1) ·Δτ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Minimize f(U ∗
l , sl), and the optimized waveform s∗l for

the lth extended target can be obtained as

s∗l = (K ′H l)
+ vec

{
U ∗

l G̃
′
l

}
.

where (·)+ denotes the Moore–Penrose pseudoinverse of
a matrix.

5) If the maximum iteration number is not reached and the
mutual coherence decreases, go to Step 3 to obtain a

new unitary matrix and iteratively perform Steps 3 and 4;
otherwise, output s∗l .

2) Second Step (Weight Vector Optimization): After s∗l (l =
1, 2, . . . , L) is obtained for all the extended targets at the first
step, a weight vector α = [α1, α2, . . . , αL]

T can be adopted to
design the optimized waveform s∗

s∗ =
√
Es

S∗α

‖S∗α‖2
(21)

where waveform matrix S∗ � [s∗1, s
∗
2, . . . , s

∗
L]. To optimize

α, an iteration algorithm is proposed in Algorithm 1, and
the optimized weight vector α∗ is obtained as the output of
Algorithm 1. Then, the optimized waveform is s∗ = S∗α∗.

Algorithm 1 Weight Vector Optimization for Multiple Ex-
tended Targets

1: Input: optimized waveform matrix S∗, transmit power Es,
step δ, maximum iteration numberK , number of targets L.

2: Initialization: α0 = 1L.
3: for k = 0, . . . ,K − 1 do
4: sk = (

√
EsS

∗αk/‖S∗αk‖2).
5: With sk, obtain dictionary matrix Ak,l (1 ≤ l ≤ L)

from (9).
6: Generate Gaussian random matrix Φ.
7: Ψk,l= ΦAk,l (1 ≤ l ≤ L), and Ψk �

[Ψk,1,Ψk,2, . . . ,Ψk,L].
8: Gk = ΨH

k Ψk.
9: Obtain μ (Gk) from (17).

10: αa = αk, αs = αk, αk+1 = αk, and μ (Gk+1) =
μ (Gk).

11: for l = 1, . . . , L do
12: α̃a = αa, and [α̃a]l = [α̃a]l + δ.
13: α̃s = αs, and [α̃s]l = [α̃s]l − δ.
14: sa = (

√
EsS

∗α̃a/‖S∗α̃a‖2).
15: ss = (

√
EsS

∗α̃s/‖S∗α̃s‖2).
16: With sa, obtain dictionary matrix Aa,l (1 ≤ l ≤ L)

from (9).
17: With ss, obtain dictionary matrix As,l (1 ≤ l ≤ L)

from (9).
18: Ψa,l = ΦAa,l (1 ≤ l ≤ L), and Ψa �

[Ψa,1,Ψa,2, . . . ,Ψa,L].
19: Ψs,l = ΦAs,l (1 ≤ l ≤ L), and Ψs �

[Ψs,1,Ψs,2, . . . ,Ψs,L].
20: Ga = ΨH

a Ψa and Gs = ΨH
s Ψs.

21: Obtain μ (Ga) and μ (Gs) from (17).
22: c1 = αk+1, c2 = αa, and c3 = αs.
23: μ1 = μ(Gk+1), μ2 = μ(Ga), and μ3 = μ(Gs).
24: i∗ = argmini{μi}.
25: μ(Gk+1) ← μi∗ , αk+1 ← ci∗ , αa ← ci∗ , and

αs ← ci∗ .
26: end for
27: if αk = αk+1 then
28: Break.
29: end if
30: end for
31: Output: optimized weight vector α∗ = αk.
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TABLE I
SIMULATION PARAMETERS

In Algorithm 1, the vector with all entries being 1 is used as
an initial waveform weight vector α0. Then, a step δ is used to
fix the weight vector iteratively. At the kth iterative step, two
new weight vectors αa and αs are calculated by adding and
subtracting one entry of αk with the step δ. Therefore, three
waveforms with weight vectors αk, αa, and αs can be ob-
tained, i.e., sk, sa, and ss. Then, the dictionary matrices Ψk,
Ψa, and Ψs for all extended targets with the corresponding
waveforms sk, sa, and ss can be obtained. By calculating the
mutual coherence of all dictionary matrices, the waveform and
the corresponding weight vector which achieve the minimum
mutual coherence can be obtained, and this weight vector is
used for the next iteration and denoted αk+1. If αk+1 = αk,
stop the iteration and the optimized weight vector α∗ = αk

is achieved, and the optimized waveform can be calculated
by (21).

In Algorithm 1, the step δ is used to control the convergence
of calculating the weight vector α. Since the minimum mutual
coherence is chosen at each iteration step, the mutual coherence
is monotone decreasing. Therefore, Increasing δ appropriately
can improve the convergence rate. The simulation results for
different δ are given in Fig. 6 in Section IV. Therefore, for both
the convergence and accuracy consideration, an appropriate
δ need to be chosen, and we choose δ = 10−2 under our
simulation conditions.

IV. SIMULATION RESULTS

A. Waveform Optimization to Minimize the Mutual Coherence

First, we evaluate the proposed method to optimized the
transmitted waveform, and the simulation parameters are given
in Table I. For realistic consideration, the simulation parameters
in this paper are chosen according to [26], [28], and [35]–[37],
where the typical CS-based radar systems are described. In
the initial simulations, the SNR of the received signal is set
to be 20 dB, which can be changed for the different system
realizations. Additionally, if there are no additional statements,
the simulation parameters are the same with Table I.

In the proposed two-step method, the waveform is first indi-
vidually optimized for each extended target. As shown in Fig. 4,
the waveforms are optimized for three extended targets, and
all the mutual coherences are decreasing with the optimization
iterations. Additionally, the optimization processes with differ-
ent initial waveforms are also shown, where choosing different
initial waveforms has a limited effect on the final converged
mutual coherence. Therefore, the proposed first step of wave-
form optimization is not sensitive with the initial waveforms.

Fig. 4. Waveform optimization for different extended targets at the first step of
proposed method. (a) Waveform optimization for target 1 with different initial
waveforms. (b) Waveform optimization for target 2 with different initial wave-
forms. (c) Waveform optimization for target 3 with different initial waveforms.

Then, in the practical radar system, multiple random waveforms
can be adopted as the initial waveforms at the first step of the
iterative method. Then, the waveform with the minimal mutual
coherence is chosen as the optimal one for each extended
targets.

After obtaining the optimized waveform for each extended
target, the dictionary matrices for different targets and wave-
forms can be obtained from (18), and the corresponding mutual
coherences can be also obtained. As shown in Fig. 5, the mutual
coherences of three optimized waveforms for the corresponding
three extended targets are shown, and the optimized waveforms
for the corresponding targets cannot guarantee the minimal
mutual coherence for other targets. Therefore, the following
steps to combine these optimization waveforms are necessary.
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Fig. 5. Mutual coherence of different optimized waveforms.

Fig. 6. Obtaining the weight vector with different steps δ.

Fig. 7. Optimized waveform for multiple extended targets.

In the second step of the two-step method, a weight vector
is obtained to combine the first individually optimized wave-
forms. As shown in Fig. 6, the iterative processes to calculate
the weight vector are depended on the step δ in Algorithm 1.
For both convergence and accuracy considerations, δ = 10−2

is used in this paper. Finally, α∗ = [0.8359, 0.6189, 0.3901]T

is obtained as the weight vector, and the optimized radar
waveforms are shown in Fig. 7, where optimized waveform

Fig. 8. Sparse reconstruction in the delay–Doppler plane using OMP method.
(a) Random waveform. (b) Alltop waveform. (c) Optimized waveform.

for all extended targets are different from the ones for indi-
vidual targets. Additionally, the mutual coherence of optimized
waveform is shown in Fig. 5, where the finally optimized
waveform achieves the best mutual coherence performance for
all extended targets at the same time.

The classical CS algorithms including orthogonal match-
ing pursuit (OMP) and basis pursuit (BP) [31], [39] are
adopted to reconstruct the sparse vector. The comparisons
between the original and reconstructed scattering coefficients
in the delay–Doppler plane using OMP and BP are shown in
Figs. 8 and 9, respectively. As shown in Figs. 8(a) and 9(a), the
random waveforms are adopted as the transmitted waveform. In



948 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 66, NO. 2, FEBRUARY 2017

Fig. 9. Sparse reconstruction in thedelay–Doppler plane using BP method.
(a) Random waveform. (b) Alltop waveform. (c) Optimized waveform.

Figs. 8(b) and 9(b), the Alltop sequence is used as the transmit-
ted waveform. The Alltop sequence is defined in [39] and [40]

sA(n) =
1√
N

ej
2π
N n3

, n = 1, 2, . . . , N (22)

where N denotes the sample number of the transmitted wave-
form. The Alltop sequence has the ideal autocorrelation char-
acteristics in the traditional radar system. In Figs. 8(c) and 9(c),
we optimize the transmitted waveform using the proposed
method. It is observed that the optimized waveform performs
better than both the random and Alltop waveforms when either
the OMP or BP reconstruction method is adopted. However, as

Fig. 10. Sparse reconstruction performance with different SNRs. (a) Sparse
reconstruction using OMP. (b) Sparse reconstruction using BP.

in this simulation the SNR of the received signal is up to 20 dB
for the clear illustration, the advantages are not very clear.
Therefore, In the following, these three transmitted waveforms
will be compared in details in terms of normalized mses under
different conditions of SNR, target numbers, and measurement
numbers.

B. Estimation of Extended Targets With Different SNR

We compare the estimation performance of extended targets
at different SNR for random, Alltop, and optimized waveforms.
As shown in Fig. 10, we provide the normalized mse of
the sparse reconstruction using OMP and BP. It is shown in
Fig. 10(a) using OMP that, the transmitted waveform using
the proposed method always performs better than both random
and Alltop waveforms, particularly at SNR of > 15 dB. In
Fig. 10(b) using BP, it is seen that the proposed radar wave-
form optimization method significantly outperforms random
and Alltop waveforms at high SNR region (SNR > 10 dB). In
both Fig. 10(a) and (b), the floor effect due to the noise is less
obvious for the proposed optimized waveform than random and
Alltop waveforms, indicating that the proposed method is more
effective at high SNR region.
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Fig. 11. Sparse reconstruction performance with different target numbers.
(a) Sparse reconstruction using OMP. (b) Sparse reconstruction using BP.

C. Estimation of Extended Targets With Different
Target Numbers

We compare the estimation performance of extended targets
with different targets numbers for random, Alltop and opti-
mized waveforms, where the SNR of the received signal is 5 dB.
As shown in Fig. 11, we provide the normalized mse of
the sparse reconstruction using OMP and BP. It is shown in
Fig. 11(a) using OMP that, the transmitted waveform using
the proposed method performs much better than random and
Alltop waveforms when the target number is from 1 to 7. Addi-
tionally, in Fig. 11(b) using BP, we observe that the optimized
waveform is the best among the three different waveforms
for the target number from 1 to 7. Therefore, by using the
waveform optimization method, which reducing the mutual
coherence of dictionary matrix, the sparse reconstruction can
be improved with different target numbers when the general CS
reconstruction algorithms are used.

D. Estimation of Extended Targets With Different
Measurement Numbers

The estimation performances of extended targets with dif-
ferent measurement numbers are compared for random, Alltop
and optimized waveforms. As shown in Fig. 12, we provide the

Fig. 12. Sparse reconstruction performance with different measurement num-
bers. (a) Sparse reconstruction using OMP. (b) Sparse reconstruction using BP.

normalized mse of the sparse reconstruction using OMP and
BP, where the SNR of the received signal is 8 dB. We observe
from both Fig. 12(a) and (b) that, the normalized MSE is the
smallest when the number of measurements is M = 15. Either
M too small or too large increases the normalized MSE. In fact,
if M is too small, the measurements are not enough to obtain
an accurate estimate for the sparse reconstruction. If M is too
large, the mutual coherence of measurement matrix will also
increase, leading to the performance reduction. Specially, it is
shown in Fig. 12(a) using OMP that, if M > 10, the transmitted
waveform using the proposed method outperforms random
waveform and Alltop waveform. It is shown in Fig. 12(b) us-
ing BP that, if M ≥ 12, the transmitted waveform using the
proposed method outperforms random and Alltop waveforms.

V. DISCUSSIONS

To illustrate the effects of target number and measurement
number, the sparse reconstruction performance with different
target numbers or measurement numbers is shown in Fig. 13,
where the OMP algorithm is used in Fig. 13(a) and BP al-
gorithm is used in Fig. 13(b). When OMP algorithm is used,
the best measurement number increases with the target number.
However, since the TIRs and optimized waveforms are different
among extended targets, neither increasing the measurement
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Fig. 13. Sparse reconstruction performance for the consideration of both
target number and measurement number. (a) Sparse reconstruction using OMP.
(b) Sparse reconstruction using BP.

number nor decreasing the target number can guarantee the
increasing of reconstruction performance. Therefore, for dif-
ferent target numbers, the measurement number must be cho-
sen appropriately. When the BP algorithm is used, as shown
in Fig. 13(b), either increasing the measurement number or
decreasing the target number usually can improve the sparse
reconstruction performance. In our simulation results, for both
OMP and BP algorithms, when the number of extended targets
is chosen from 1 to 7, the best measurement number is around
20. Note that more considerations about the measurement num-
ber must be taken in the different scenarios.

VI. CONCLUSION

In this paper, a radar system model based on CS has been
established for multiple extended targets in the delay–Doppler
plane. Then, both OMP and BP algorithms have been adopted to
estimate the target ranges and velocities. Additionally, to mini-
mize the mutual coherence of the dictionary matrix and improve
the estimation performance, an iterative two-step method has
also been proposed. Simulation results show the convergence
of the proposed iterative algorithm and the performance im-
provement achieved by optimizing the transmitted waveform.
Future work will concentrate on the waveform optimization for
multiple extended targets in the CS radar with clutters.
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