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Abstract: This paper studies joint beamforming and power allocation for multicell multiuser multi-antenna systems with
the objective of maximising the minimum signal-to-interference-plus-noise ratio (max–min SINR). The authors first
consider developing an iterative algorithm to achieve the optimal performance by extending the uplink–downlink
duality for finite-scale wireless communication systems. The solution is then generalised to achieve the asymptotically
optimal multicell beamforming with the aim to reduce the overhead of signalling exchange between coordinated base
stations based on large dimension random matrix theory. Based on that, an efficient multicell beamforming algorithm
is proposed to asymptotically achieve the max–min SINR. To further solve the complexity issue of large dimensional
matrix inversion involved in the calculation of beamforming vectors, they propose a low-complexity beamforming
calculator based on truncated polynomial expansion approach. Numerical results validate the effectiveness of the
authors’ proposed algorithms and show that they can achieve the optimal or asymptotically optimal performance in a
massive multi-input multi-output system with low complexity and small backhaul overhead.
1 Introduction

To meet the demands for explosive increase of data traffic and the
number of user terminals, massive multiple-input multiple-output
(MIMO) technology has emerged as a promising solution and has
attracted a lot of research interest [1], due to its potential of
significantly improving performance in terms of both data rate and
link reliability. Owing to the increased number of base station
(BS) antennas, exceptional array gain and high spatial resolution
can be obtained for the massive MIMO systems [1–4]. In
particular, it was revealed that a simple linear precoding with a
large enough transmit antenna array is able to completely mitigate
the effect of the inter-user interference and noise, provided that
channel state information (CSI) of users is ideally available at the
BS. The major hurdle is that acquiring CSI will cause too much
training overhead in a frequency division duplexing system and
may suffer pilot contamination problem in a time division
duplexing system.

Note that the inter-cell interference (ICI) is being the major
problem which affects the system performance especially
regarding the cell-edge users for cellular communication systems.
In order to reduce the ICI, coordinated multi-point transmission
and reception technology has been intensively studied [5–8].
Among them, the uplink–downlink duality theory has been a key
technology which can be exploited to solve the optimisation
problem of joint beamforming and power allocation [9, 10]. The
key idea is that the original downlink problem with coupling
beamformers can be recast as a virtual uplink problem that has the
closed-form structure of the optimal beamformers. To leverage the
uplink–downlink duality, the signal-to-interference plus-noise ratio
(SINR) balancing problem was first addressed using the extended
coupling matrix [9]. However, it is only subjected to a single
sum-power constraint. Later, the uplink–downlink duality theory
was extended to the case of per-BS power constraints and was
then exploited to efficiently tackle the max–min SINR problem [10].

Recently, the design of coordinated multicell downlink
beamforming of multicell massive MIMO communication systems
was studied by jointly using the uplink–downlink duality and
random matrix theory [11, 12]. Motivated by the fact that the
deterministic approximation of achievable SINR or rate in massive
MIMO system approaches the true value when the system
dimension tends to infinity [13–16], an asymptotic uplink–
downlink duality was proposed. Based on that, an efficient
coordinated beamforming algorithm was proposed for massive
MIMO systems, in which the beamforming vectors at each BS
were readily obtained only using local CSI while the power
allocation was calculated only using the large-scale fading factors
of channels. It was disclosed that most gain of coordinated
beamforming in multicell massive MIMO system can be obtained
only using partial CSI. The authors of [11] investigated the max–
min SINR problem by jointly using the bisection method and
solving the problem of the power minimisation of dual virtual
uplink problem for massive MIMO communication systems.
Huang et al. studied the max-min SINR problem via combining the
fixed-point equation theory [17, 18] and the uplink–downlink
duality for multicell massive MIMO communication systems
subject to a total power constraint [12]. Bannour et al. investigated
the duality between the number of antennas in MIMO and the
number of subcarriers in orthogonal frequency division
multiplexing (OFDM) and illustrated that a negligible gap between
massive MIMO-OFDM and conventional MIMO-OFDM with a
large number of subcarriers in [19]. The tradeoff of the energy and
spectral efficiency was investigated for the uplink of large-scale
multiuser MIMO system with fixed receivers, such as zero-forcing,
maximum ratio combining, and minimum mean square errors
(MMSE) receiver. It has been shown that the use of moderately
large antenna arrays can improve the spectral and energy efficiency
with orders of magnitude compared with the single-antenna system
[20]. To improve the efficiency of RF power amplifiers,
Mohammed and Larsson investigated the design of the constant
envelope precoding for large-scale multiuser MIMO system [21].
However, the max–min SINR problem for multicell massive
MIMO systems subject to a per-BS power constraint is not
investigated from the perspective of the fixed-point theory and the
uplink–downlink duality based on statistical CSI.

In this paper, we study coordinated joint beamforming and power
allocation by using the fixed-point equation theory [17, 18] and the
uplink–downlink duality for multicell multiuser multiple-input
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single-output (MISO) downlink systems subject to per-BS power
constraints. In particular, our goal is to find a distributed solution
by jointly utilising the long-term and short-term CSI, so as to
exploit the potential gain of multicell multiuser MISO channels
with limited overhead for acquiring CSI and backhaul. Different
from the problem considered in [12], the problem of interest is to
maximise the minimum SINR subject to per-BS power constraints,
where a general spatially correlated MISO channel model is
considered. The main contributions are listed below:

† By extending the uplink–downlink duality, the max–min SINR
multicell beamforming with per-BS power constraints is
transformed into an equivalent and more tractable virtual uplink
form for finite-scale system. Then, an iterative algorithm with
guaranteed convergence is presented to solve the virtual uplink
problem, by which the optimal beamforming and power allocation
are achieved by converting the virtual uplink solution to the
downlink.
† The above idea is generalised to achieve the asymptotically
optimal multicell beamforming for massive MIMO system. In
particular, by exploiting the hardening effect of massive MIMO
channels, we use the derived deterministic equivalentence of
achievable SINR as the objective and generalise the uplink–
downlink duality into a large-scale regime where the solution
conversion from the uplink to the downlink only needs statistical
CSI. Then, an efficient multicell beamforming solution is proposed
to asymptotically achieve the max–min SINR, in which the power
allocation is calculated on a long-term basis while the
beamforming vector is obtained with a closed-form expression on
a short-term basis. Our analysis shows that the proposed solution
asymptotically achieves the optimal performance as the number of
transmit antennas tends to infinity, but with much reduced
backhaul overhead and computational complexity.
† To further address the issue of large dimensional matrix inversion
involved in the calculation of beamforming vectors, a
low-complexity beamforming calculator is presented based on
truncated polynomial expansion (TPE) approach. In particular, in
order to guarantee the performance of such a low-complexity
solution, we derive the equivalent form of the uplink SINR
achieved by the TPE beamforming. Then, a new optimisation
problem is formulated and solved to calculate the polynomial
coefficients of TPE beamforming which only requires the
statistical CSI. Numerical results show that the TPE based
beamforming is effective even with a very small value of
truncating order, thus with significantly reduced computational
complexity.

The remaining of this paper is organised as follows. The system
model is described in Section 2. In Section 3, a coordinated
multicell beamforming algorithm is proposed for finite-scale
system. Then, a coordinated multicell beamforming algorithm is
proposed for large-scale system in Section 4. In Section 5, a lower
complexity algorithm is proposed to reduce the computational
complexity. The simulation results are shown in Section 6 and
conclusions are finally given in Section 7.

The following notations are used throughout this paper. Bold
lowercase and uppercase letters represent column vectors and
matrices, respectively. The superscripts T, H and † represent the
transpose operator, conjugate transpose operator, the Moore
Penrose pseudo-inverse of matrix, respectively. ‖·‖ denotes the
Euclidean norm for vector or the Frobenius norm for matrix. ·⌈ ⌉
and ·⌊ ⌋ denote the ceiling function and the floor function,
respectively.
2 System model

Consider a K-cell multiuser-MISO downlink transmission system
where the jth BS is equipped with Mj transmit antennas and serves
I single-antenna users in cell j, j = 1, …, K. We denote the kth user
in cell j as user-( j, k) and BS in cell m as BS-m. The received
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signal yj,k for user-( j, k) is written as

y j,k =
∑K
m=1

∑I

n=1

�����
pm,n

√
hHm,j,kwm,nxm,n + n j,k , (1)

where pj,k represents the transmit power for user-( j, k), hm,j,k denotes
the flat fading channel vector from the mth BS to user-( j, k), w j,k

denotes the normalised beamforming vector for user-( j, k)
(||w j,k || = 1), xj,k is the information signal intended for user-( j, k),
and nj,k is a zero-mean circularly symmetric complex Gaussian
random noise with variance s2

j,k . Further, the channel vector hm,j,k
is modelled as

hm,j,k = F1/2
m,j,kzm,j,k , (2)

where

Fm,j,k � CN 0,
dm,j,kRm,j,k

Mj

( )
,

zm,j,k � CN 0, IMj

( )
,

denotes the large-scale channel effect, and the channel covariance
matrix Rm,j,k [ CMj×Mj satisfies the following conditions

lim sup Rm,j,k

∥∥∥ ∥∥∥ , +1, ∀m, j, k, (3)

lim inf
1

Mj

tr Rm,j,k

( )
. 0, ∀m, j, k. (4)

For description convenience, the K-cell MU-MISO downlink
transmission system formulated in (1) is modelled as an
interference network with I = KI users, by which
user- m/I

⌈ ⌉
, m− I m/I

⌊ ⌋( )
can be simply denoted as user-m,

m = 1, . . . , I . For simplicity, let hn,m = h n/I⌈ ⌉, m/I⌈ ⌉,m−I m/I⌊ ⌋, pm =
p m/I⌈ ⌉,m−I m/I⌊ ⌋, wm = w m/I⌈ ⌉,m−I m/I⌊ ⌋, gm = g m/I⌈ ⌉,m−I m/I⌊ ⌋, and
s2
m = s2

m/I⌈ ⌉,m−I m/I⌊ ⌋ denote, respectively, the channel coefficient

between the BS-n and the user-m, the transmit power, the
normalised beamforming vector, the SINR, and the noise variance
for user-m. The achievable SINR of user-m is calculated as

gm =
pm h

H
m,mwm

∥∥∥ ∥∥∥2

∑
n=m pn h

H
n,mwn,

∥∥∥ ∥∥∥2 + 1
(5)

where hn,m = (hn,m/sm). To achieve the fairness among the users,
we focus on the max–min SINR optimisation problem given as

max
{wm ,pm}

min
m

gm

s.t.
∑jI

m=(j−1)I+1
pm ≤ Pj, pm ≥ 0, ||wm|| = 1.

⎧⎪⎪⎨
⎪⎪⎩ (6)

where Pj is the maximum allowable transmit power of the jth BS.
3 Algorithm for finite-scale system

Due to the coupling of the optimisation variables, it is seen that the
problem (6) is non-convex and thus difficult to solve directly. In
order to decouple the optimisation variables, in this section, we
resort to transforming the downlink problem into the dual virtual
uplink optimisation problem by extending the uplink–downlink
duality and obtain the solution of original problem by combining
2381



the fixed-point equation theory. To proceed, we introduce some
auxiliary variables {vj}

K
j=1 which represent the virtual noise

variance. Then the problem (6) with intractable per-BS power
constraints is transformed as follows

min
vj

max
{wm ,pm}

min
m

gm

s.t.
∑I
m=1

v m/I⌈ ⌉pm ≤ ∑K
j=1

vjPj, pm ≥ 0, ||wm|| = 1

⎧⎪⎪⎨
⎪⎪⎩ (7)

The existing results in [9–12] have revealed that the problem (7) is
dual to the following problem

min
vj

max
{wm,lm}

min
m

gm

s.t.
∑I
m=1

lm ≤ ∑K
j=1

vjPj, lm ≥ 0, ||wm|| = 1.

⎧⎪⎪⎨
⎪⎪⎩ (8)

where lm denotes the transmit power of the virtual uplink user-m,
and gm is the virtual uplink SINR for user-m and is given by

gm =
lm h

H
m,mwm

∥∥∥ ∥∥∥2

∑I
n=1,n=m ln h

H
m,nwm

∥∥∥ ∥∥∥2 + v m/I⌈ ⌉
. (9)

It is easy to see that the optimisation problem (8) is convex in {vj},
the problem (7) with respect to variables {vj} can be solved via a
subgradient projection method, and the subgradient of {vj} is
given by g = P1 −

∑I
k=1 p1,k , . . . , PK−

∑I
k=1 pK,k

[ ]
. Fixing {ln}

and {vj}, the optimal receive beamformer is the MMSE receiver
which has an analytic structure, given by

wopt
m =

∑
n=m lnhm,nh

H
m,n + v m/I⌈ ⌉IM m/I⌈ ⌉

( )−1
hm,m∑

n=m lnhm,nh
H
m,n + v m/I⌈ ⌉IM m/I⌈ ⌉

( )−1
hm,m

∥∥∥∥
∥∥∥∥
. (10)

According to the results obtained in [12], the uplink transmit power
with given gm can be iteratively updated as follows

lm = gm

∑I
n=1,n=m ln h

H
m,nwm

∥∥∥ ∥∥∥2 + v m/I⌈ ⌉
( )

h
H
m,mwm

∥∥∥ ∥∥∥2 , ∀m. (11)

Once the dual uplink problem (8) has been solved, according to the
Fig. 1 Multicell MU-MISO max–min SINR optimisation
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uplink–downlink duality theory, the optimal uplink beamforming
vectors are the beamforming solution of the original downlink
problem, while the power solution of the downlink problem can
also be obtained from the uplink power allocation. Defining an

extended power vector p̃ = p
1

[ ]
, and an extended coupling matrix

Q =
DG D1I
1

Pmax
ṽTDG

1

Pmax
ṽTD1I ,

⎡
⎣

⎤
⎦ (12)

where Pmax =
∑K

j=1 vjPj, the matrices G and D are, respectively,
given by

Gm,n =
0 m = n

h
H
n,mwn

∥∥∥ ∥∥∥2
, m = n,

{
(13)

Dm,n =
gm

h
H
m,mwm

∥∥∥ ∥∥∥2 , m = n, 0, m = n,
.

{
(14)

and ṽ = v1 · · · v1︸   ︷︷   ︸
I

v2 · · · v2︸   ︷︷   ︸
I

· · · vK · · · vK︸   ︷︷   ︸
I

⎛
⎝

⎞
⎠T

. The conclusions in [9]

have revealed that the optimal power vector p is obtained as the
first I components of the dominant eigenvector of Q, which can be
scaled so that its last component equals one.

In summary, the distributed algorithm computing the optimal
solution of the problem (7) is given in Algorithm 1 (Fig. 1) where
f max is the maximum eigenvector of the extended coupling matrix
of Q, 6 is the update step-size, g is the subgradient of the virtual
noise vector v, ɛ denotes the threshold of inner iteration, and δ
denotes the threshold of outer iteration. It is easy to see that the
main computational complexity in Algorithm 1 (Fig. 1) is the
matrix inversion and the singular value decomposition (SVD) in
steps 4 and 6. The complexity of the matrix inversion and the

SVD of M ×M matrix is O M2.736( )
and O M3( )

, respectively [22].

Therefore, in Algorithm 1 (Fig. 1), the complexity of the matrix

inversion is f
∑K

j=1 O M2.736
j

( )
and the complexity of the SVD is

wO KI + 1( )3( )
, where f and j denote, respectively, the number

of the iterations of steps 4 and 6.
4 Algorithm for large-scale system

The beamforming vectors can be efficiently calculated via analytical
expression, however, the iterative update of both the beamformers
and the power allocation is based on the instantaneous CSI in
Algorithm 1 (Fig. 1) designed for finite-scale system. The
IET Commun., 2016, Vol. 10, Iss. 17, pp. 2380–2390
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overhead of the signalling exchange between coordinated BSs is
mainly determined by the update frequency of the transmit power
allocation. In what follows, we try to reduce the overhead of the
signalling exchange between the coordinated BSs by exploiting the
large-scale random matrix theory. In other words, if the power p
and l in the communication system converge to some
deterministic values that only rely on statistical channel
information, then these deterministic values can be a priori
calculated, stored, and updated only when the channel statistics
change. Thereafter, the beamforming vector can be computed
using these slowly updated power values and the available
instantaneous local CSI. To proceed, we assume that both the
number of transmit antennas Mj and the number of users per cell I
go to infinity while their ratio lim (I/Mj), ∀j remains bounded.

Plugging the MMSE beamforming (10) in the expression of the
uplink SINR (9) of user- m/I

⌈ ⌉
, m− I m/I

⌊ ⌋( )
, we have

gm = lmh
H
m,m

∑
n=m

lnhm,nh
H
m,n + v m/I⌈ ⌉IM m/I⌈ ⌉

( )−1

hm,m. (15)

Though the instantaneous SINR in (15) is a random variable in
quadratic form for each random instantaneous CSI, its asymptotic
approximation only depends on the empirical distribution of the

eigenvalues for
∑

n=m lnhm,nh
H
m,n + v m/I⌈ ⌉IM m/I⌈ ⌉

( )−1
, given by

the following Lemma 1.

Lemma 1: The instantaneous SINR gm can be approximated by a

deterministic quality Ym such that Ym − gm −−−−−�a.s.

M m/I⌈ ⌉�1 0 as the

system dimension M m/I⌈ ⌉ � 1. Ym is given by

Ym = lmtr �Fm,m

∑
n=m

lnhm,nh
H
m,n + v m/I⌈ ⌉IM m/I⌈ ⌉

( )−1
( )

. (16)

Also, Ym is described by the following fixed-point equation

Ym = lm
1
�I
tr �Fm,mTm

( )
, ∀m, (17)

where

�Fm,m = Fm,m

s2
m

= dm,m
s2
mM m/I⌈ ⌉

Rm,m,

�Fm,n =
Fm,n

s2
n

= dm,n
s2
nM m/I⌈ ⌉

Rm,n,

Tm = ln
�I

∑�I

n=1,n=m

dm,nRm,n

M m/I⌈ ⌉s2
n

1

1+ dn
+ 1

�I
v m/I⌈ ⌉IM m/I⌈ ⌉

( )−1

,

dn =
1
�I
tr ln

�Fm,nTm

( )
.

Proof: According to Lemmas 3 and 4 given in the Appendix, we
have

gm = lmh
H
m,m

∑
n=m

lnhm,nh
H
m,n + v m/I⌈ ⌉IM m/I⌈ ⌉

( )−1

hm,m

−−−−−�a.s.

M m/I⌈ ⌉�1 lm
1
�I
tr �Fm,mTm

( )
. (18)

□

Based on the existing results in [9–12], once the optimal solution of
the max–min SINR optimisation problem is obtained, all users
achieve the same optimal balanced SINR. Thus, the virtual uplink
IET Commun., 2016, Vol. 10, Iss. 17, pp. 2380–2390
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transmit power can be updated by

lm = Ym

(1/�I)tr �Fm,mTm

( ) , ∀m, (19)

and the virtual uplink transmit power must satisfy
∑I

m=1 lm ≤∑K
j=1 vjPj, then both the downlink transmit power and the virtual

noise variance can be obtained. Similarly, the instantaneous
random variable gm can be applied to obtain the asymptotic
approximation of the elements of G̃ and D̃ are described as the
following Theorem 1.

Theorem 1: The elements of the instantaneous extended coupling

matrices G and D can be approximated as G̃m,n − Gm,n −−−−−�
a.s.

M m/I⌈ ⌉�1 0

and D̃m,n − Dm,n −−−−−�
a.s.

M m/I⌈ ⌉�1 0, respectively, as the system dimension

M m/I⌈ ⌉ � 1, where

G̃m,n =
0, m = n,

(1/�I)tr �Fn,nTn
�Fn,mTn

( )
tr �Fn,nT

′
n

( )
1+ lm(1/�I)tr �Fn,mTn

( )( )2 , m = n,

⎧⎪⎨
⎪⎩ (20)

D̃m,n =
Ymtr �Fm,mT

′
m

( )
(1/�I) tr �Fm,mTm

( )( )2 , m = n,

0, m = n,

⎧⎪⎨
⎪⎩ (21)

where

T ′
m = Tm

1
�I

∑�I

n=1,n=m

ln
�Fm,n

d′n
1+ dn

( )2 + IM m/I⌈ ⌉

( )
Tm,

d′n =
1
�I
tr ln

�Fm,nT
′
m

( )
.

Proof: The proof is given in Section 8.2 of the Appendix. □

To compute the downlink transmit power, the extended coupling
matrix Q is approximated as

Q̃ =
D̃G̃ D̃1I

1∑I
m=1 lm

ṽTD̃G̃
1∑I

m=1 lm

ṽTD̃1I .

⎡
⎢⎣

⎤
⎥⎦ (22)

Thus, the algorithm to compute the optimal downlink transmit power
p is given in Algorithm 2 (Fig. 2), where f max is the maximum
eigenvector of the extended coupling matrix of Q̃, 6 is the update
step, g is the subgradient of the virtual noise vector v, ɛ denotes
the threshold of inner iteration loop, and δ denotes the threshold of
outer iteration loop.

The convexity of problem (8) ensures the convergence of updating
v[l + 1] by the subgradient method, i.e. the outer iteration loop is
guaranteed to converge. According to the results on deterministic
equivalents [12], the virtual uplink transmit power l and the
transmit power p converge to deterministic point in a massive
MIMO system, i.e. the inner iteration loop is guaranteed to
converge too.

In Algorithm 2 (Fig. 2), each BS updates the virtual uplink user
power only using statistical CSI in step 3 and then updates
correspondingly the downlink user power via the extended
coupling matrix which only requires statistical CSI in step 7. In
other words, l and p can be updated at a long-term timescale.
Therefore, Algorithm 2 (Fig. 2) operates on the order of tens of
seconds or more (at the same timescale as the variation of the
long-term channel statistics) and thus the implementation
complexity is greatly reduced. The specific cooperation overhead
2383



Fig. 2 Multicell MU-MISO power allocation optimisation

Table 1 Overhead of cooperation

Step Exchange of inter-BS

3 lmdm,mRm,m, lndm,nRm,n
7 l, dm,mRm,m , dn,mRn,m
wopt

m l, local CSI
of Algorithm 2 (Fig. 2) is summarised in Table 1. In contrast, the
power update in Algorithm 1 (Fig. 1) is on the order of
milliseconds to track the instantaneous channel effect. Thus,
Algorithm 1 (Fig. 1) requires a large amount of instantaneous
power update to compute the optimal solution [12].
5 Low-complexity beamforming

In the massive MIMO system, the computation of matrix inversion in
the MMSE beamformer will grow with the system dimension, which
has become a major hurdle in implementation of the proposed
algorithm. To solve it, we provide a low-complexity calculator of
the beamforming vectors based on TPE approach. In order to
guarantee the performance of such a low-complexity solution, we
derive the equivalent form of the uplink SINR achieved by the
Fig. 3 Iterative algorithm for computing Z( l,k)
m,n (l = 1, …, p, k = 1, …, p)

2384
TPE beamforming. Then, a new optimisation problem is
formulated to optimise the polynomial coefficients of TPE
beamforming, which only requires the statistical CSI. For notation
convenience, here we define some new symbols as follows

H = ���
l1

√
�hm,1, . . . ,

���
lm

√
�hm,m, . . . ,

���
l�I

√
�hm,�I

( )
. (23)

The MMSE beamformer in (10) is approximated by the truncated
polynomial expansion [23, 24]

wTPE
m =

∑N−1

l=0

ul
1
�I
HmH

H
m

( )l

hm,m. (24)

where Hm denotes the matrix that is obtained by removing
���
lm

√
�hm,m

fromH, u0,…, uN−1 is a sequence of real design parameters and N is
the TPE order. Plugging (24) in the expression of the virtual uplink
SINR (9) of user- m/I

⌈ ⌉
, m− I m/I

⌊ ⌋( )
, we have

gm = uHlmAmu

uH
∑I

n=1,n=m lnBm,n + v m/I⌈ ⌉Cm

( )
u
, (25)
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Table 2 Simulation parameters

Parameters Values

distance of inter-BS 1 km
bandwidth of channel 10 MHz
path loss (in dB) model 15.3+ 37.6 log10 d(d: metre)
antenna gain 15 dBi
log-normal shadowing 8 dB
noise power spectral density −162 dBm/Hz
noise figure 9 dB
where u = (u0, . . . , uN−1)
T, Am [ C

N×N , Bm,n [ C
N×N , Cm [

CN×N , l = 0, …, N− 1, k = 0, …, N − 1 and the TPE matrices Am,
Bm,n, Cm are described as follows

[Am]l,k = �h
H
m,m

1
�I
HmH

H
m

( )l

�hm,m�h
H
m,m

1
�I
HmH

H
m

( )k

�hm,m, (26)

[Bm,n]l,k = �h
H
m,m

1
�I
HmH

H
m

( )l

�hm,n�h
H
m,n

1
�I
HmH

H
m

( )k

�hm,m, (27)

[Cm]l,k = �h
H
m,m

1
�I
HmH

H
m

( )l+k

�hm,m. (28)

Thus, we can optimise the asymptotic uplink SINR with respect to
the polynomial coefficients u = (u0, . . . , uN−1)

T by formulating
an optimisation problem expressed as follows

maximise
u

gm = uHlmAmu

uH
∑I

n=1,n=m lnBm,n + v m/I⌈ ⌉Cm

( )
u
,

s.t. uHCmu = 1.

⎧⎪⎪⎨
⎪⎪⎩ (29)

The following Lemma 2 discloses that the optimal solution uopt of
the above problem.

Lemma 2: Let a be an eigenvector corresponding to the maximum
eigenvalue of GlmAmG and

uopt =
∑I

n=1,n=m

lnBm,n + v m/I⌈ ⌉Cm

( )−(1/2)

a/a,
Fig. 4 SINR performance achieved by Algorithms 1 and 2 (Figs. 1 and 2), and t
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where G = (∑I
n=1,n=m lnBm,n + v m/I⌈ ⌉Cm

)−(1/2)
and the scaling

factor α is given by

a = C1/2
m

∑I

n=1,n=m

lnBm,n + v m/I⌈ ⌉Cm

( )−(1/2)

a

∥∥∥∥∥∥
∥∥∥∥∥∥.

Proof: The result follows trivially by Boyd and Vandenberghe [25],
so the proof is omitted here. □

Since Am [ C
N×N , Bm,n [ C

N×N , Cm [ C
N×N are of finite

dimensions, we derive deterministic equivalentence for each of
their elements using the resolvent matrix. By introducing the
following random functions in t, we have

Xm(t) =
1
�I
�h
H
m,m

t
�I
HmH

H
m + IM m/I⌈ ⌉

( )−1
�hm,m, (30)

Zm,n(t1, t2) =
1
�I
�h
H
m,mS t1

( )
�hm,n�h

H
m,nS t2

( )
�hm,m, (31)
he MRT against per BS power constraint P (M = 64, I = 4, K = 3)
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Fig. 5 SINR performance achieved by Algorithms 1 and 2 (Figs. 1 and 2), and the MRT against the number of transmit antennas M (I = 4, K = 3, P = 46 dBm)
where S t( ) = (t/�I)HmH
H
m + IM m/I⌈ ⌉

( )−1
. By taking derivations of

(30) and (31), we obtain

dlXm(t)

dtl

∣∣∣∣∣
t=0

= (−1)l l! 1
�I
�h
H
m,m

1
�I
HmH

H
m

( )l
�hm,m, (32)

∂l∂kZm,n(t1, t2)

∂tl1∂t
k
2

∣∣∣∣∣
t1=0,t2=0

= (−1)l+k l!k!
1
�I
�h
H
m,m

1
�I
HmH

H
m

( )l

�hm,n�h
H
m,n

1
�I
HmH

H
m

( )k

�hm,m.

(33)

Plugging (32) and (33) into (26)–(28), we have

[Am]l,k =
�I
2
(−1)l+k

l!k!

dlXm(t)

dtl

∣∣∣∣∣
t=0

dkXm(t)

dtk

∣∣∣∣∣
t=0

, (34)

[Bm,n]l,k =
�I(−1)l+k

l!k!

∂l∂kZm,n(t1, t2)

∂tl1∂t
k
2

∣∣∣∣∣
t1=0,t2=0

, (35)

[Cm]l,k =
�I(−1)l+k

(l + k)!

dl+kXm(t)

dtl+k

∣∣∣∣∣
t=0

. (36)

According to Lemmas 3 and 4 in the Appendix and the Rank-1
perturbation lemma in [26], (30) can be transformed into the
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following form

Xm(t) �
1
�I
tr �Fm,m

t
�I
HHH + IM m/I⌈ ⌉

( )−1
( )

� 1
�I
tr �Fm,mD(t)

( )
,

(37)

where

D(t) = IM m/I⌈ ⌉ +
1
�I

∑�I

n=1

ln
�Fm,n

tIM m/I⌈ ⌉
1+ tbn(t)

( )−1

.

bn(t) =
1
�I
tr lnFm,nD(t)

( )
.

Thus the derivatives of Xm t( ) can be calculated as follows

dlXm(t)

dtl
� 1

�I
tr �Fm,mDl(t)

( )
,

where Dl(t) is the derivatives of D(t) and the corresponding
derivatives of D can be computed using the iterative algorithm in
[27]. By substituting the derivatives of Xm t( ) into (34) and (36),
we can obtain the elements [Am]l,k and [Cm]l,k of the TPE matrices
Am and Cm with (34) and (36), respectively. In what follows we
study the derivatives of Zm,n t1, t2

( )
to obtain the TPE matrix Bm,n.

Theorem 2: In the large-scale system, assuming that M and I tend to
infinity and

0 , lim inf
I

M
≤ lim sup

I

M
, +1,
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Fig. 6 SINR performance achieved by the TPE beamformer, Algorithms 1 and 2 (Figs. 1 and 2) against per BS power constraints Pj (M = 64, I = 4, K = 3)
then it holds that

Zm,n(t1, t2)−
1
�I

�h
H
m,nQn(t2)

1+ t2bn(t2)
�Fm,m

Qn(t1)�hm,n
1+ t1bn(t1)

−−�a.s.
M�1 0, (38)

where

Qn(t) =
t
�I
HmnH

H
mn + IM

( )−1

.

Proof: The proof is given in Section 8.3 of the Appendix. □

After some basic mathematical operations of (38) and using Lemma
3, we have

Zm,n(t1, t2)+ Zm,n(t1, t2)t1bn(t1)+ Zm,n(t1, t2)t2bn(t2)

+ Zm,n(t1, t2)t1bn(t1)t2bn(t2) −−−−−�
a.s.

M m/I⌈ ⌉�1
1
�I
tr �Fm,nD(t2) �Fm,mD(t1)

( )
.

(39)

Computing the lth derivatives for t1 and the kth derivatives for t2 of
(39), we have

Z(l,k)
m,n � 1

�I
tr �Fm,nDl

�Fm,mDk

( )
.

−
∑l

i=1

l

i

( )
ibn,i−1Z

l−i,k( )
m,n −

∑k

j=1

k

j

( )
jbn,j−1Z

l,k−j( )
m,n

−
∑l

i=1

∑k

j=1

l

i

( )
k

j

( )
ijbn,i−1bn,j−1Z

l−i,k−j( )
m,n (40)
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where Z(l,k)
m,n represents the lth derivatives for t1 and the kth derivatives

for t2 of Zm,n(t1, t2), Dl and Dk are the derivatives of D, βn,i−1 and
βn,j−1 are the derivatives of βn. The iterative algorithm of
computing Zm,n(t1, t2) is summarised in Algorithm 3 (Fig. 3), then
the element [Bm,n]l,k of the TPE matrix Bm,n can be obtained by (35).

Remark 1: In the proposed TPE beamforming scheme, the
large-dimension matrix inversion is approximated by truncated
polynomial expansion. Thus its complexity of the large matrix

inversion can be reduced from O M2.736
j

( )
to O N2.736( )

, where N is

the order of the truncated polynomial expansions. Note that N
increases with the quality of requirements for QoS and usually does
not need to scale with the system dimension. For instance, our
numerical results in Section 6 show that N = 5 is sufficient to achieve
a near optimal performance for the case Mj = 64. Although the
polynomial coefficients in (26)–(28) depend on the instantaneous CSI,
we apply the random function to compute the asymptotic coefficients
which only requires the statistical CSI and has ignorable performance
loss especially when the number of antennas tends to infinity,
meanwhile it also reduces the backhaul overhead of CSI collection.
6 Simulation results

In this section, the performance of the proposed algorithms is
investigated via numerical examples. We consider a cluster of
three cells with inter-BS distance of 1 km. Each cell consists one
multiple-antenna BS and a plurality of single-antenna users. All
users randomly locate in the cell edge and its distance away from
the BS is no less than 400 m. The path loss (in dB) model is
assumed with 15.3+ 37.6 log10 d for distance d in metres and the
shadow fading follows the distribution N 0, 8 dB( ). For simulation
convenience, each BS has the same number of transmit antenna M
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Fig. 7 SINR performance achieved by the TPE beamformer, Algorithms 1 and 2 (Figs. 1 and 2) against the number of transmit antennas M (I = 4, K = 3, P = 46
dBm)
and the covariance matrix is given as follows

Rm,l,k

[ ]
i,j
= r j−i, i , j,

ri−j( )∗
, i ≥ j,

{
(41)

where i = 1, 2, …, M, j = 1, 2, …, M, r = 0.6. The simulation
parameters are summarised in Table 2. For comparison, the
conventional maximum ratio transmission (MRT) scheme is also
simulated, where both equal power allocations among the
beamforming vectors and max–min SINR optimised power
allocation among the beamforming vectors are considered.

Fig. 4 illustrates the SINR performance achieved by several
multicell beamforming algorithms including the proposed
algorithms and the conventional MRT scheme, for the
configuration M = 64 and I = 4. The results show that the proposed
Algorithms 1 (Fig. 1) and 2 (Fig. 2) both significantly outperform
the MRT algorithm employing equal power allocation or max–min
power allocation, in terms of the average SINR, especially at the
high transmit power regime. It is also seen that the performance of
the proposed Algorithm 2 (Fig. 2) is very close to that of the
proposed Algorithm 1 (Fig. 1) in a wide range of transmit power,
verifying the effectiveness of the proposed Algorithm 2 (Fig. 2)
which has much lower complexity and backhaul overhead.

Fig. 5 shows the SINR performance of the above algorithms with the
varying number of antennas M at the BS, for the configuration P = 46
dBm and I = 4. The results reveal that the proposed Algorithm 2
(Fig. 2) is achieving more close SINR performance to the proposed
Algorithm 1 (Fig. 1) as the number of transmit antennas increases.
This confirms that our proposed Algorithm 2 (Fig. 2) is
asymptotically optimal in the massive MIMO system. At the same
time, one can see that our proposed algorithms have a large gain
over the MRT algorithm when the number of transmit antennas is
2388
not large enough. One also notes that the performance improvement
becomes smaller and smaller as the number of antennas increases in
large-scale MIMO wireless communication system [3] [We would
like to explore in detail the tradeoff between performance and
hardware cost. Nonetheless, it falls out of the scope of current work.].

Fig. 6 illustrates the impact of employing TPE beamforming of
different order N on the performance of the proposed algorithms,
for the configuration M = 64 and I = 4. It is shown that the
performance of TPE beamforming algorithm is getting closer to that
of the proposed Algorithm 2 (Fig. 2) as the TPE order N increasing.
In particular, at the low transmit power regime, a small value of N
such as N = 5 suffers very marginal performance loss. The results
show that the performance loss caused by TPE increases with the
transmit power constraint, but even in the high transmit power
regime, the TPE beamforming with N = 5 obtains a large portion of
the optimal performance, while having much reduced computational
complexity compared with Algorithm 2 (Fig. 2).

Fig. 7 further shows the SINR performance achieved by the
low-complexity TPE beamforming algorithm with the varying
number of transmit antennas M under configuration P = 46 dBm.
Similar to the results shown in Fig. 6, one can see that the
performance of TPE beamforming algorithm is getting closer to
the optimal one with the increasing order N. In particular, when
the number of transmit antennas M is becoming larger, the results
show that a smaller value of N is needed to get the same portion
of the optimal performance. This implies that our TPE
beamforming design is effective in a massive MIMO system.
7 Conclusions

In this paper, we have studied joint beamforming and power
allocation for a multicell massive MIMO system with the objective
IET Commun., 2016, Vol. 10, Iss. 17, pp. 2380–2390
& The Institution of Engineering and Technology 2016



of maximising the minimum SINR. By introducing some auxiliary
variables, we first transformed the original downlink optimisation
problem into an equivalent dual uplink optimisation problem where
the optimal beamformers have analytic structure. An iterative
algorithm was then developed to achieve its solution, but it
depends on the instantaneous CSI. To address this issue, the
random matrix theory was applied to generalise the uplink–
downlink duality to an asymptotical form in which the solution
conversion from the uplink to the downlink is only based on
statistical CSI. Based on that, an efficient multicell beamforming
solution was proposed to asymptotically achieve the max–min
SINR solution, in which the power allocation is calculated on a
long-term basis while the beamforming vector is obtained with a
closed-form expression and on a short-term basis. Since the
beamforming computation still involves a large matrix inversion
and becomes computationally prohibitive as the number of
antennas increase infinitely, we have further proposed a
low-complexity TPE beamformer scheme in which the large matrix
inversion is efficiently approximated by the truncated polynomial
expansions. To determine the polynomial coefficients of the TPE
beamformer efficiently, we first derived the equivalent form of the
uplink SINR achieved by the TPE beamforming, based on which
we then formulated an optimisation problem to calculate the
polynomial coefficients based on statistical CSI. The effectiveness
of the above proposals was validated via numerical results.
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10 Appendices

10.1 Related lemmas
Lemma 3 [28]: Let x � CN 0, IM
( )

and U [M×M Hermitian with
bounded spectral norm whose elements are independent of x, then
(1/M )xHUx− (1/M )trU −−−−−�a.s.

M m/I⌈ ⌉�1
0.

Lemma 4 [4]: Let U [M×M Hermitian with bounded spectral norm,
H [M×�I be a random matrix with independent column vectors and
the column of H satisfies hn � CN 0, Fn

( )
. Then, for any z > 0 it

holds that

1
�I
tr US z( )( ) − 1

�I
tr UT z( )( ) −−−−−�a.s.

M m/I⌈ ⌉�1 0,

where

S z( ) = HHH − zIM
( )−1

,

T(z) = 1
�I

∑�I

n=1

Fn

1+ dn(z)
− zIM

( )−1

,

dn(z) =
1
�I
tr Fn

1
�I

∑�I

k=1

Fk

1+ dk (z)
− zIM

( )−1
⎛
⎝

⎞
⎠.

Lemma 5 [29]: Let U [M×M Hermitian with bounded spectral
norm, H [M×�I be a random matrix with independent column
vectors and the column of H satisfies hn � CN 0, Fn

( )
. Then, for

any t > 0 it holds that

1
�I
tr US t( )( ) − 1

�I
tr UD t( )( ) −−−−−�a.s.

M m/I⌈ ⌉�1 0,
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where

S t( ) = IM + tHHH

�I

( )−1

.

D(t) = IM + 1
�I

∑�I

n=1

lnFn
tIM

1+ tbn(t)

( )−1

.

bn(t) =
1
�I
tr lnFnD(t)

( )
.

Lemma 6: The resolvent matrices of Hm and Hmn are denoted by

Q(t) = (t/�I)HmH
H
m + IM

( )−1
and Qn(t) =

(
(t/�I)HmnH

H
mn + IM

)−1
,

where Hm is obtained by removing the mth column hm of H and
Hmn does not include the mth column hm and the nth column hn
of H. Then it holds that

Q t( ) = Qn t( ) − t
�I

lnQn t( )hnhHnQn t( )
1+ (t/�I)lnh

H
nQn t( )hn

,

and also

Q(t)hn =
Qn(t)hn

1+ (t/�I)lnh
H
nQn(t)hn

.

Proof: This follows from the Woodbury identity in [30]. □

10.2 Proof of Theorem 1

To mitigate the impact of the small-scale fading coefficients on the
matrices G and D, we firstly obtain the asymptotic determine

expression of �h
H
m,mwm

∥∥∥ ∥∥∥2
and �h

H
n,mwn

∥∥∥ ∥∥∥2
based on the large

dimension random theory. Then the asymptotic approximation of
the extended coupling matrices G and D is obtained and is
described as G̃ and D̃. Similar to the derivations of (18), we have
the following two asymptotic deterministic expressions of

�h
H
m,mwm

∥∥∥ ∥∥∥2
and �h

H
n,mwn

∥∥∥ ∥∥∥2
. Employing Lemma 3 and the

expression of beamformer in (10), we have

�h
H
m,mwm

∥∥∥ ∥∥∥2 =
�h
H
m,m

∑
n=m lnhm,nh

H
m,n + v m/I⌈ ⌉IM m/I⌈ ⌉

( )−1
hm,m

( )2

�h
H
m,m

∑
n=m lnhm,nh

H
m,n + v m/I⌈ ⌉IM m/I⌈ ⌉

( )−2
hm,m

−−−−−−�a.s.

M m/I⌈ ⌉�1
1
�I

tr �Fm,mTm

( )( )2
tr �Fm,mT

′
m

( ) ,

(42)

where

�Fm,m = Fm,m

s2
m

= dm,m
s2
mM m/I⌈ ⌉

Rm,m. (43)

Tm = 1
�I

∑�I

n=1,n=m

ln
�Fm,n

1

1+ dn
+ 1

�I
v m/I⌈ ⌉IM m/I⌈ ⌉

( )−1

.

dn =
1
�I
tr ln

�Fm,nTm

( )
,

(44)

T ′
m = Tm

1
�I

∑�I

n=1,n=m

ln
�Fm,n

d′n
1+ dn

( )2 + IM m/I⌈ ⌉

( )
Tm. (45)

d′n =
1
�I
tr ln �Fm,nT

′
m

( )
. (46)
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By using jointly the Rank-1 perturbation lemma [26] and Lemma 4,
we have

h
H
n,mwn

∥∥∥ ∥∥∥2 = h
H
n,mJ

−1
n hn,nh

H
n,nJ

−1
n hn,m

h
H
n,nJ

−2
n hn,n

= h
H
n,mQ

−1
n hn,nh

H
n,nQ

−1
n hn,m

h
H
n,nJ

−2
n hn,n 1+ lmh

H
n,mQ

−1
n hn,m

( )2

−−−−−�a.s.

M m/I⌈ ⌉�1
(1/�I)tr �Fn,nTn

�Fn,mTn

( )
tr �Fn,nT

′
n

( )
1+ lm(1/�I)tr �Fn,mTn

( )( )2 , (47)

where

�Fn,n =
Fn,n

s2
n

= dn,n
s2
nM n/I⌈ ⌉

Rn,n, (48)

�Fn,m = Fn,m

s2
m

= dn,m
s2
mM n/I⌈ ⌉

Rn,m, (49)

Jn =
∑
j=n

ljhn,jh
H
n,j + v n/I⌈ ⌉IM n/I⌈ ⌉ , (50)

Qn =
∑
j=n,m

ljhn,jh
H
n,j + v n/I⌈ ⌉IM n/I⌈ ⌉ . (51)

Thus the elements of the matrices G̃ and D̃ can be calculated as
follows

G̃m,n =
0, m = n,

(1/�I)tr �Fn,nTn
�Fn,mTn

( )
tr �Fn,nT

′
n

( )
1+ lm(1/�I)tr �Fn,mTn

( )( )2 , m = n,

⎧⎪⎨
⎪⎩ (52)

D̃m,n =
Ym tr �Fm,mT

′
m

( )
(1/�I) tr �Fm,mTm

( )( )2 , m = n,

0, m = n,

⎧⎪⎨
⎪⎩ (53)
10.3 Proof of Theorem 2

According to Lemmas 3, 5 and 6, (31) can be changed into

Zm,n(t1, t2) =
1
�I
�h
H
m,mQ(t1)�hm,n�h

H
m,nQ(t2)�hm,m (54)

= 1
�I

�h
H
m,mQn(t1)�hm,n�h

H
m,nQn(t2)�hm,m

1+ (t1/�I)ln�h
H
m,nQn(t1)�hm,n

( )
1+ (t2/�I)ln�h

H
m,nQn(t2)�hm,n

( )
(55)

= 1
�I

tr �Fm,mQn(t1)�hm,n�h
H
m,nQn(t2))

( )
1+ t1bn(t1)

( )
1+ t2bn(t2)

( ) , (56)

= 1
�I

�h
H
m,nQn(t2)

1+ t2bn(t2)
�Fm,m

Qn(t1)�hm,n
1+ t1bn(t1)

, (57)

where

�Fm,m = dm,m
s2
mM m/I⌈ ⌉

Rm,m,

Qn(t) =
t
�I
HmnH

H
mn + IM

( )−1

,

D(t) = IM m/I⌈ ⌉ +
1
�I

∑�I

n=1

ln
�Fm,n

tIM m/I⌈ ⌉
1+ tbn(t)

( )−1

,

bn(t) =
1
�I
tr ln

�Fm,nD t( )( )
.

(58)
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