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A Study of Deterministic Pilot Allocation for
Sparse Channel Estimation in OFDM Systems

Chenhao Qi, Member, IEEE, and Lenan Wu

Abstract—In this letter, we investigate the deterministic pilot
allocation for sparse channel estimation in OFDM systems. Based
on the rule of minimizing the coherence of the DFT submatrix,
we derive that the pilot design according to the cyclic different set
(CDS) is optimal. However, the CDS only exists for some specific
number of OFDM subcarriers. For those cases where the CDS
is unavailable, we propose a scheme using discrete stochastic
approximation to obtain a near-optimal pilot pattern. Simulation
results demonstrate that our scheme is much faster convergent
and more efficient than the exhaustive search; and it has been
shown that substantial improvement for channel estimation can
be achieved.

Index Terms—Pilot allocation, channel estimation, discrete
stochastic approximation, compressed sensing.

I. Introduction

OFDM transforms the frequency-selective wireless chan-
nel into several parallel flat-fading narrowband sub-

channels. Each subchannel only needs a single-tap equalizer,
and therefore the high complexity associate with the long
equalizer to combat inter-symbol interference (ISI) is miti-
gated. Nevertheless, this approach hinges on accurate channel
estimation. Recent developments in compressed sensing (CS)
has motivated the extensive research on the application of
sparse recovery algorithms to channel estimation, which needs
less pilots and demonstrates to be more accurate than the
standard least squares (LS) [1]. Many CS algorithms including
matching pursuit (MP), orthogonal matching pursuit (OMP)
and basis pursuit (BP) have been employed for pilot-assisted
channel estimation in OFDM systems [2]. But few works dis-
cuss the OFDM pilot allocation for sparse channel estimation.

The well-known restricted isometry property (RIP) indicates
that the measurement using random matrices guarantees the
sparse recovery with high probability [3], which implies
the randomly-generated pilot pattern is theoretically optimal.
However, it has drawbacks of high complexity, large storage
and low efficiency in real applications. In [4], a deterministic
pilot selection scheme is proposed for sparse channel estima-
tion using Dantzig selector. In [5], a clustered pilot design is
presented in the study of underwater acoustic (UWA) channel
estimation. And a scheme using channel data to offline train
the pilots and search the optimized pilot placements at the
transmitter is proposed in [6].
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In this letter, we investigate the deterministic pilot allocation
for sparse channel estimation in OFDM systems. Based on the
rule of minimizing the coherence of the DFT submatrix, we
derive that the pilot design according to the cyclic different
set (CDS) is optimal. For those cases where the CDS is
unavailable, we propose a scheme using discrete stochastic
approximation to obtain a near-optimal pilot pattern via offline
training.

Notationwise, symbols for matrices (upper case) and vectors
(lower case) are in boldface. (·)T , (·)H, diag{·}, IL, RM and
CN denote transpose, conjugate transpose (Hermitian), the
diagonal matrix, the identity matrix with dimension L, the
set of real-valued vector with dimension M and the complex
Gaussian distribution, respectively. A(l) denotes the l-th col-
umn of A.

II. SystemModel

We treat the comb-type pilot assisted channel estimation in
OFDM systems. Assume the number of OFDM subcarriers
to be N, we use Np pilot subcarriers as k1, k2, . . . , kNp (1 ≤
k1 < k2 < . . . < kNp ≤ N) for frequency-domain chan-
nel estimation. The transmit pilot symbols and the receive
pilot symbols are denoted as X(k1), X(k2), . . . , X(kNp) and
Y(k1), Y(k2), . . . , Y(kNp ), respectively. Then the problem is for-
mulated as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y(k1)
Y(k2)
...

Y(kNp )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X(k1) 0 0 0
0 X(k2) 0 0

0 0
. . . 0

0 0 0 X(kNp )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·FNp×L ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(1)
h(2)
...

h(L)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

η(1)
η(2)
...

η(Np)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1)

where h = [h(1), h(2), · · · , h(L)]T is the equivalent sam-
pled channel impulse response (CIR) with length L, η =
[η(1), η(2), · · · , η(Np)]T∼CN(0, σ2

ηINp ) is an additive white
Gaussian noise (AWGN) term, and

FNp×L =
1√
N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ωk1 · · · ωk1·(L−1)

1 ωk2 · · · ωk2·(L−1)

...
...

. . .
...

1 ωkNp · · · ωkNp ·(L−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is a DFT submatrix where ω = e− j2π/N . We denote

X = diag{X(k1), X(k2), · · · , X(kNp)}
y = [Y(k1), Y(k2), · · · , Y(kNp )]T
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and
A = XFNp×L (2)

then (1) is reformulated as

y = Ah + η (3)

Since the system sampling interval is usually much smaller
than the channel delay spread, most components of h are either
zero or nearly zero, which means that h is a sparse vector. In
this case, we can improve the data rate by using less pilots
than the unknown channel coefficients, i.e., Np < L, where
CS algorithms are employed to reconstruct h instead of the
standard LS channel estimation. It’s also noticed that L is
usually no larger than the length of OFDM guard interval,
i.e., N/4.

III. Pilot Allocation

Recent advances in CS show that under noiseless condition
h can be reconstructed from the measurement y with high
probability when dictionary matrix A satisfies RIP [3]. How-
ever, there is no known method to test in polynomial time
whether a given matrix satisfies RIP. An alternative approach
we adopt here is to minimize the coherence of A [7]. We
define the coherence to be the maximum absolute correlation
between two different columns, denoted as

g(p) = max
0≤m<n≤L−1

∣∣∣〈A(m), A(n)〉∣∣∣

= max
0≤m<n≤L−1

∣∣∣∣∣
Np∑
i=1

∣∣∣X(ki)
∣∣∣2ωki(n−m)

∣∣∣∣∣ (4)

and therefore the objective function is

Q = min
p

g(p) (5)

with respect to the pilot allocation p = [k1, k2, . . . , kNp ] because
different p results in different A according to (2). The optimal
pilot pattern is

popt = arg min
p

g(p) (6)

Suppose all OFDM pilot symbols are equipowered to be

E =
∣∣∣X(ki)

∣∣∣2, i = 1, 2, . . . ,Np (7)

and denote c = n − m, (4) is simplified as

g(p) = E · max
1≤c≤L−1

∣∣∣∣∣
Np∑
i=1

ωkic
∣∣∣∣∣ (8)

We define

f (c) =
∣∣∣∣∣

Np∑
i=1

ωkic
∣∣∣∣∣
2

=

Np∑
i=1

Np∑
l=1

ωc(ki−kl) (9)

For all possible

d = (ki − kl) mod N, i � l (10)

let ad denote the number of occurrence of d (d = 1, 2, . . . ,N−
1), then

f (c) = Np +

N−1∑
d=1

ad · ωcd (11)

Since ωd � 1, we have

L−1∑
c=1

f (c) = Np(L − 1) +
N−1∑
d=1

ad
ωd − ωLd

1 − ωd
(12)

Therefore

max
1≤c≤L−1

f (c) ≥ Np +
1

L − 1

N−1∑
d=1

ad
ωd − ωLd

1 − ωd
(13)

and the equality holds only with

f (1) = f (2) = · · · = f (L − 1) = Np +
1

L − 1

N−1∑
d=1

ad
ωd − ωLd

1 − ωd

(14)
which means

a1 = a2 = · · · = aN−1 =

∑N−1
d=1 ad

N − 1
=

Np(Np − 1)

N − 1
(15)

We plug (15) into (11) and get

Q =
√

f (1) =
√

f (2) = · · · = √ f (L − 1) =

√
Np(N − Np)

N − 1
(16)

It’s known that the CDS satisfies the above Welch bound [8]
and therefore minimizes the coherence of A. So the pilot
allocation according to the CDS is optimal. However, the
CDS only exists for some specific N. For those N where
the CDS is unavailable, we propose a scheme using discrete
stochastic approximation to search for a near-optimal pilot
allocation. The procedures for implementation are summarized
in Algorithm 1. It’s a modification of the algorithm in [6].

Algorithm 1 - Pilot Allocation
1: Randomly generate a p0, p̂0 ⇐ p0.
2: π[0]⇐ 0Nx , π[0, 0]⇐ 1, u⇐ 0, v⇐ 0.
3: for n = 0, 1, . . . , M − 1
4: for k = 0, 1, . . . , Np − 1
5: m⇐ n ∗ Np + k.
6: generate p̃m\pm.
7: if g( p̃m) < g(pm)
8: pm+1 ⇐ p̃m, u⇐ m + 1.
9: else

10: pm+1 ⇐ pm.
11: end if
12: π[m + 1]⇐ π[m] + (r[m + 1] − π[m])/(m + 1).
13: if π[m + 1, u] > π[m + 1, v]
14: p̂m+1 ⇐ pm+1, v⇐ u.
15: else
16: p̂m+1 ⇐ p̂m.
17: end if
18: end for(k)
19: end for(n)

We define pm, p̂m and p̃m (m = 0, 1, 2, . . .) as different pilot
patterns, i.e., pm = [k1, k2, . . . , kNp ]. We denote Nx = MNp

and define π[m] ∈ RNx (m = 0, 1, 2, . . .) as an occupation-
probability vector which indicates an estimate of the occupa-
tion probability of one pilot pattern. The ith component of
π[m] is denoted as π[m, i]. r[m+ 1] ∈ RNx is defined as a zero
vector except for its (m + 1)th component to be 1.
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Fig. 1. Comparisons of Algorithm 1 with the
exhaustive search and the Welch bound for N =
273.
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Fig. 2. Comparisons of Algorithm 1 with the
best of the exhaustive search for N = 256.
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Fig. 3. Comparisons of channel estimation for
different pilot allocation schemes.

Starting from a random p0, we initialize p̂0 and generate a
zero π[0] where π[0, 0] is then set to be 1. In each iteration, we
obtain a new p̃m by sequentially changing one pilot position
of pm. We compare g( p̃m) with g(pm) and move a small step.
The algorithm will converge to the optimal pilot pattern which
has the largest occupation probability [6]. The main difference
with [6] is that we minimize the coherence of the measurement
matrix A rather than using channel data to minimize the
mean square error (MSE) of channel estimate, which indicates
its applicability to the transmitter without a-prior knowledge
of the channel, and leads to the simplicity in updating the
occupation probability. In practice, the calculation of g(p)
is equivalent to find the largest off-diagonal upper-triangular
component of AH A. Moreover, Algorithm 1 also works for
different-powered pilot symbols in contrast to (7). The final
choice of p̂m+1 is a near-optimal pilot pattern and believed to
converge to the global optimum that is the best of all possible(

N
Np

)
pilot patterns.

IV. Simulation Results

As shown in Figure 1, we compare Algorithm 1 with
the exhaustive search and the Welch bound for N = 273
and Np = 17, where the CDS exists and achieves the
Welch low bound Q = 4 according to (16). Algorithm 1
is demonstrated to converge much faster than the exhaustive
search that exhaustively searches for the best pilots from all
possible

(
N
Np

)
pilot patterns in terms of (5). However, it’s

difficult to implement fast FFT operations for N = 273 OFDM
subcarriers. In practice, the number of subcarriers is usually
designed to be 64, 256, 512 or 1024, where the CDS does
not exist. So in Figure 2, we compare Algorithm 1 with the
exhaustive search for N = 256. It’s observed that Algorithm
1 exceeds the best of 32000 exhaustive search in no more
than 900 iterations, and proves much faster convergent and
more efficient. So for those cases CDS unavailable, we can
use Algorithm 1 to offline search a near-optimal pilot pattern.

Comparisons of sparse channel estimation for different pilot
allocation are illustrated in Figure 3. A sparse multipath chan-
nel is generated as a zero CIR vector h with L = 50, where
S = 5 positions are randomly selected as nonzero channel
taps. The attenuation of each taps satisfies the independent and
identically distributed (i.i.d.) CN(0, 1). The system is designed

that Np = 16 pilots of the total N = 256 OFDM subcarriers
are employed for frequency-domain channel estimation using
OMP. As shown in Figure 3, we compare the MSE of channel
estimation for different pilot allocation schemes. Algorithm
1 outperforms the exhaustive search and randomly generated
pilots, which verifies the effectiveness of our proposed scheme.

Acknowledgment

The authors would like to thank Prof. Xiaodong Wang of
Columbia University for his helpful suggestions.

V. Conclusion

Based on the rule of minimizing the coherence of the DFT
submatrix, we have derived that the pilot design according to
CDS is optimal. For those cases where the CDS is unavail-
able, we have proposed a scheme using discrete stochastic
approximation to obtain a near-optimal pilot pattern via offline
training. Simulation results have validated the effectiveness of
the proposed scheme, which is demonstrated to be much faster
convergent and more efficient than the exhaustive search.
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