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Abstract: The authors consider underwater acoustic (UWA) channel estimation based on sparse recovery using the recently
developed homotopy algorithm. The UWA communication system under consideration employs orthogonal frequency-
division multiplexing (OFDM) and receiver preprocessing to compensate for the Doppler effect before channel estimation.
The authors first extend the original homotopy algorithm which is for real-valued signals to the complex field. The authors
then propose two enhancements to the sparse recovery-based UWA channel estimator by exploiting the UWA channel
temporal correlations, including the use of a first-order Gauss–Markov model and the recursive least-squares algorithm for
channel tracking. Moreover the authors propose a scheme to optimise the pilot placement over the OFDM subcarriers based
on the discrete stochastic approximation. Simulation results show that the homotopy algorithm offers faster and more accurate
UWA channel estimation performance than other sparse recovery methods, and the proposed enhancements and pilot
placement optimisation offer further performance improvement.
1 Introduction

Underwater acoustic (UWA) channel has been regarded as
one of the most difficult communication medium because of
the large delay spread and the frequency-dependent Doppler
spread [1]. Since the bandwidth is usually comparable with
the carrier frequency, the system is essentially wideband.
On the other hand, the channel attenuation that becomes
more severe for higher frequency limits the acoustic
propagation and the available bandwidth. Earlier systems
employ the frequency shift keying (FSK) to modulate signals
onto discrete frequency tones with guard time and guard
bands [2]. Later coherent demodulation techniques are
adopted to increase the data rate and spectral efficiency by
adaptive phase tracking and equalisation [3]. More recently,
the orthogonal frequency-division multiplexing (OFDM)
technique, which has prevailed in wireless communication
systems, has also been applied to UWA communications [4].
OFDM transforms the frequency-selective channel into
parallel flat-fading narrowband subchannels, where each
subband only needs a single-tap equaliser. Therefore the
high complexity associated with the long decision-feedback
equaliser (DFE) to combat inter-symbol interference (ISI)
that may spread up to several hundreds of symbols in single-
carrier systems is substantially mitigated.

One of the main challenges of UWA communications is
channel estimation. The UWA channel is a time-varying
multipath channel with large delay spread, that is, a doubly
selective channel. Moreover, the channel exhibits sparsity
that can be exploited by the channel estimator. For
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example, a basis expansion model (BEM) is used to explore
the delay-Doppler sparsity in [5]. More practical approaches
concentrate on exploiting UWA channel sparsity after some
preprocessing, that is, resampling [4, 6]. Since the UWA
channel impulse response (CIR) is usually dominated by
only a small number of significant paths, most channel
coefficients are either zero or nearly zero [1]. Many recent
works focus on estimation of sparse channels by making
use of the recently emerged compressed sensing (CS)
techniques for efficient reconstruction of sparse signals
from a few number of linear measurements [7]. Among the
many CS algorithms, matching pursuit (MP), orthogonal
matching pursuit (OMP) and basis pursuit (BP) have
already been applied to channel estimation for UWA
OFDM systems [6, 8]. Specifically, in [6], BP is shown to
outperform OMP, especially for severe Doppler spread
conditions. In [8], three BP algorithms including ℓ1-LS,
YALL1 and SpaRSA are compared. However, the
complexity of BP algorithms is much higher than that of
the OMP. For UWA communications where the channel
estimates have to be frequently updated, applying BP for
real-time channel estimation is computationally very
expensive. Hence it is important to consider alternative
high-performance CS algorithms with lower complexity.
Moreover, other avenues should be explored to further
improve the channel estimation performance, such as
exploiting the channel temporal correlation, and optimising
the pilot symbol placement.

In this paper, we consider the application of the homotopy
algorithm to sparse UWA channel estimation. We first extend
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the original homotopy algorithm that is for real-valued signals
to the complex field. We then propose two enhancements to
the CS-based UWA channel estimators that exploit the
temporal correlation of the channel response. The first one
is based on a first-order Gauss–Markov model and uses the
previous channel estimate to assist the current one. The
other enhancement is to use the recursive least-squares
(RLS) algorithm together with the sparse recovery to track
the time-varying UWA channel. Another contribution of
this work is the pilot placement optimisation where we
employ the discrete stochastic approximation technique to
perform off-line design of the pilot symbol placement over
the OFDM subcarriers to minimise the mean-square channel
estimation error.

The notations used in this paper are according to
the convention. Symbols for matrices (upper case) and vectors
(lower case) are in bold italic face. (.)T, (.)H, |.|, ‖.‖1 ‖.‖2, C,
R, diag{.}, IL, 0M×N and CN denote the transpose, the
conjugate transpose (Hermitian), the absolute value, the ℓ1-
norm, the ℓ2-norm, the set of complex numbers, the set of real
numbers, the diagonal matrix, the L × L identity matrix, the
M × N zero matrix and the complex Gaussian distribution,
respectively. O(.) denotes the order of complexity. f̂ denotes
the estimate of the parameter of interest f.

The remainder of the paper is organised as follows. Section
2 describes the UWA channel model, the pre-processing steps
and the sparse channel estimation problem. Section 3
develops the complex homotopy algorithm and two
enhancements that exploit channel temporal correlation for
the CS-based channel estimator. Section 4 discusses the
design of optimised pilot placement. Simulation results are
given in Section 5. Finally, Section 6 concludes the paper.

2 System descriptions

We consider the UWA channel that has a time-varying
multipath CIR

h(t, t) =
∑S

i=1

ai(t)d(t− ti(t)) (1)

where S, ai(t) and ti(t) denote the number of total paths, the
ith path attenuation and the path delay, respectively [4].
Supposing the dominant Doppler shift is caused by the
relative movement between the transmitter and the receiver,
all paths have the similar Doppler scaling factor 1(t) such that

ti(t) ≃ ti − 1(t) · t (2)

Let s(t) = Re{x(t)ej2pfct} denote the transmitted signal in
passband, where fc is the carrier frequency and x(t) is the
baseband OFDM signal. Then the received passband signal is

r(t) =
∫1

−1

h(t, t)s(t − t)dt+ n(t)

= Re
∑S

i=1

ai(t)x((1 + 1(t))t − ti(t))

{

× ej2pfc((1+1(t))t−ti(t))

}
+ n(t) (3)

where n(t) is the additive Gaussian noise. Within the duration
of each OFDM packet, the parameters are treated as constants
740
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since the UWA channel coherence time is usually on the order
of seconds, whereas each OFDM packet is no more than
hundreds of milliseconds [9]. Then (3) can be written as

r̃(t) = Re
∑S

i=1

aix((1 + 1)t − ti)e
j2pfc((1+1)t−ti)

{ }
+ n(t) (4)

We notice that it is scaled in time by 1/(1 + 1) and the Doppler
shift ej2pfc1t is frequency-dependent. Since the bandwidth
is comparable with the carrier frequency in UWA
communications, the Doppler shift cannot be regarded as the
same for the whole band. Then several approaches have been
proposed to mitigate the Doppler effect [10]. Here we adopt
a two-step approach [4]. The first step is resampling and the
second is the carrier frequency offset (CFO) compensation.
Each OFDM packet contains one preamble and one
postamble, that is, linear frequency-modulated (LFM)
waveforms. By cross-correlating the received signal with the
known preamble and postamble, the receiver estimates the
length of each OFDM packet and then obtains an estimated
Doppler scaling factor 1̂. As the frequency range used for
UWA communications is usually tens of thousands of hertz,
we can directly sample the received passband signal without
down conversion. We resample the received signal in (4) as

ỹ(t) = r̃
t

1 + 1̂

( )

= Re
∑S

i=1

aix
1 + 1

1 + 1̂
t − ti

( )
ej2pfc((1+1)/(1+1̂)t−ti)

{ }
+ ñ(t)

(5)

where ñ(t) is the resampled version of n(t). The equivalent
received baseband signal is

y(t)=
∑S

i=1

aix
1+1

1+ 1̂
t− ti

( )
ej2pfc((1−1̂)/(1+1̂)t−ti) +nB(t) (6)

where nB(t) is the equivalent baseband noise of ñ(t). We define
the residual CFO as

fo = 1− 1̂

1 + 1̂

( )
fc (7)

which is assumed to be uniformly distributed over the whole
bandwidth [4]. Therefore a wideband system is converted
into a narrow band system with frequency-independent
CFOs. We can then apply the well-developed null-
subcarrier-based scheme for CFO compensation [11]. More
discussions on the residue CFO are found in [6] where the
inter-channel interference (ICI) is also considered.

Owing to the large delay spread of UWA channel, we
prefer ZP-OFDM to CP-OFDM [12]. ZP-OFDM saves the
transmission energy by zero-padding rather than filling
cyclic prefix. Considering a ZP-OFDM system, there are
totally Nd subcarriers, among which Np(Np ≤ Nd) are
selected as pilots, with positions k1 , k2 , · · · , kNp

and

Nu null subcarriers used for CFO compensation. We denote
the transmit pilots and the receive pilots as X (k1),
X (k2), . . . , X (kNp

) and Y (k1), Y (k2), . . . , Y (kNp
), respectively.

Considering a UWA channel whose CIR length
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after sampling is L, we have

y = Ah + h (8)

where A = XFNp×L, X = diag{X (k1), X (k2), . . . , X (kNp
)},

FNp×L is a submatrix selected by the row indices [k1, k2, . . . ,

kNp
] and column indices [0, 1, . . . , L 2 1] from the standard

Nd × Nd Fourier matrix, y = [Y (k1), Y (k2), . . . , Y (kNp
)]T,

h ¼ [h(0), h(1), . . . , h(L 2 1)]T, h = [h(0), h(1), . . . , h(Np −
1)]T � CN (0, s2

hINp
).

Since the system sampling interval is much smaller
compared to the channel delay spread, most channel
coefficients are either zero or nearly zero, which means that
h is a sparse vector. If A has more rows than columns, that
is, Np . L, then (8) is a standard least-squares (LS)
problem. However, we are more interested in the sparse
case with Np , L, that is, the number of pilots is less than
the number of channel coefficients.

3 Channel estimation based on sparse
recovery

Suppose that the channel vector h [ RL has S non-zero
components, with S ≪ L. Then we can recover h from (8)
by solving the following ℓ0-norm minimisation problem

min
h

||h||0 s.t. ||y − Ah||2 ≤ sh (9)

where ‖h‖0 counts the number of non-zero elements of h. This
is an NP-hard combinatorial problem. However, it can be
replaced by the following ℓ1-norm optimisation problem [13]

min
h

||h||1 s.t. ||y − Ah||2 ≤ sh (10)

Currently, methods for solving (10) can be roughly divided into
two classes, including convex optimisation algorithms and
greedy algorithms. The convex optimisation algorithms include
BP algorithms such as ℓ1-LS [14], YALL1 [8], SpaRSA [15]
and other optimisation solvers. However, these methods usually
have high computational complexities. The greedy algorithms
sequentially search for the locally optimal solutions and they
include methods such as MP, OMP [16], CoSaMP [17],
subspace pursuit (SP) [18] and homotopy [19]. Since in UWA
communications frequent channel estimation is required, low-
complexity greedy algorithms are usually preferred. Among the
greedy algorithms, CoSaMP and SP require explicit knowledge
of the sparsity. MP and OMP have been extensively studied
with their variants [20, 21]; and it is known that they may not
always achieve satisfactory performance [22]. In [19], it is
shown that homotopy has the same order of complexity as
OMP, while its sparse recovery performance is as good as that
obtained from convex optimisation. So in the following, we
will apply the homotopy algorithm to UWA channel estimation.

3.1 Complex homotopy

Real-valued homotopy is proposed in [19] as a least angle
regression (LARS) algorithm with the least absolute
shrinkage and selection operator (LASSO) modifications. It
constructs a sparse solution by iteratively selecting the
matrix columns and eventually forming a linear
combination of them closest to the signal. From the
geometric perspective, homotopy always takes a step along
IET Signal Process., 2011, Vol. 5, Iss. 8, pp. 739–747
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an equiangular direction that has equal angles with all
vectors selected so far. Since the UWA channel is a sparse
complex-valued vector, we will first extend the homotopy
algorithm from the real field to the complex field. Note that
unlike the MP and OMP algorithms, for which the
extension to the complex field is straightforward by simply
replacing the transpose operator by the Hermitian operator,
the extension of homotopy to the complex field is more
involved.

Consider the following unconstrained optimisation problem

min
h[CL

||y − Ah||22/2 + l||h||1 (11)

Homotopy starts with a large l [ R and h ¼ 0, and terminates
when l � 0 with h converging to the solution to the
‘noiseless’ sparse recovery problem

min
h

||h||1 s.t. y = Ah (12)

For the ‘noisy’ sparse recovery problem considered in this
paper, the stopping condition l � 0 should be changed to

||y − Ah||2 ≤ sh (13)

Denote

fl(h) = ||y − Ah||22/2 + l||h||1 (14)

A necessary condition for h to be a minimiser of fl(h) is that
the subdifferential of fl(h) to be zero, that is

∂fl(h) = −AH (y − Ah) + l∂||h||1 = 0 (15)

where the subdifferential ∂‖h‖1 of ‖h‖1 is given by

∂||h||1 = w [ C
L w(i) = h(i)

|h(i)| , h(i) = 0

w(i) = {n [ C, |n| ≤ 1}, h(i) = 0

∣∣∣∣∣∣
⎫⎬
⎭

⎧⎨
⎩

(16)

where h(i) and w(i) denote the ith component of h and w,
respectively. It is observed that (16) is different from that of the
real-valued homotopy algorithm in [19]. Let T ¼ {i: h(i) = 0}
denote the support of h and c ¼ AH(y 2 Ah) denote the
correlations between the dictionary matrix and the residue.
Then the condition ∂fl(h) ¼ 0 can be written as equivalent to
the following two conditions

c(T ) = l · h(T )

|h(T )|
|c(T c)| ≤ l

⎧⎨
⎩ (17)

where T c, c(T ) and h(T ) denote the complement of T, the
correlations on the support T and the channel parameters on T,
respectively. Homotopy traces a solution path by maintaining
these two conditions. The complex-valued homotopy algorithm
is summarised in Fig. 1. The main difference from the real-
valued homotopy algorithm lies in Step 2. The step size
gl [ C and the moving direction dl [ C

L have to be decided
so that a new solution at the (l + 1)th step is obtained as

hl+1 = hl + gldl (18)
741
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where hl [ C
L is initialised to be a zero vector and converges to

the solution of (11). Since the current selected columns always
follow (17), we have

cl+1(Il) = (ll − gl)
hl(Il)

|hl(Il)|
(19)

On the other hand, we want to find a new column from I c
l at the

(l + 1)th step. Since

cl+1 = AH (y − Ahl+1) (20)

plugging (18) into (20), we obtain

cl+1 = AH (y − Ahl) − glA
H Adl (21)

Then we define

cl(I
c
l ) = AH (I c

l )(y − Ahl)

dm(Ic
l ) = AH (Ic

l )Adl

so that

cl+1(Ic
l ) = cl(I

c
l ) − gldm(Ic

l ) (22)

Once a column outside Il appears to have the same projections
with the current residue as the columns inside Il, which in fact
occurs when (19) happens to equal (22) in amplitude as

|cl(i) − gldm(i)| = ll − gl, i [ I c
l (23)

we consider it to be one possible candidate for the next selection
because the residue can decline equally in this direction. It is the
reason for solving the quadratic equation in Step 2.

Moreover, the selection of the breakpoint in the solution
path for the complex homotopy should also be extended.
The breakpoint occurs when one component of hl(Il)
crosses zero, which means both the real and imaginary parts
equal to zeros. If

Is = i [ Il

Re{hl(i)}

Re{dl(i)}
= Im{hl(i)}

Im{dl(i)}

∣∣∣∣
{ }

= Ø

Fig. 1 Complex homotopy
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then

g−l = min
i[Is

−Re{hl(i)}

Re{dl(i)}

{ }
(24)

Finally, the step size gl is determined to be the minimum
between g+l and g−l , if g−l exists.

The above extension to the complex field can be verified by
forcing cI ¼ 0 and mI ¼ 0 in the quadratic equation of Step 2
of Fig. 1, which then reduces to the real-field form of the
homotopy algorithm [19]. Unlike the OMP method that
removes the entire projection at each step, homotopy only
removes part of it, which can be thought of as a moderate
greedy algorithm. Moreover, homotopy allows the columns
to enter as well as to leave the current selection, which
makes it more powerful than OMP. In terms of the
computational complexity, homotopy is roughly on the
same order as OMP with O(N2

p L) while the complexity of
the convex optimisation algorithms is O(L3).

3.2 Incorporating channel temporal correlation

The basic idea is to use the channel estimate h(m21) from the
previous time slot (m–1) to assist the current channel
estimation h(m). Since the UWA channel is temporally
correlated, we model it using a simple first-order Gauss–
Markov process, given by

h(m) = kh(m−1) + v(m) (25)

with k = J0(2pfdTs) (26)

where J0, fd and Ts denote the zeroth order Bessel function of
the first kind, the maximum Doppler shift and the symbol
period, respectively. v(m) � CN (0, s 2

v IL) is a Gaussian
noise term independent of h(m21). We rewrite (8) as

y(m) = Ah(m) + h(m) (27)

Combining (25) and (27) using matrix notation, we have

y(m)

kh(m−1)

[ ]
= A

IL

[ ]
h(m) + h(m)

−v(m)

[ ]
(28)

It is obvious that we can still apply the sparse recovery
algorithms to solve for h(m) with the following two stopping
conditions

||y(m) − Ah(m)||2 ≤ sh (29)

and

||h(m) − kh(m−1)||2 ≤ sv (30)

At low signal-to-noise ratio (SNR) where sh is comparable to
sv, (28) can be regarded as having additional observations
compared to (27), where improved channel estimation
performance is expected.

OFDM transforms the frequency-selective UWA channel
into parallel flat-fading subchannels. Each subchannel may
experience a different Doppler shift because of the
wideband nature of the UWA channel. We therefore rewrite
IET Signal Process., 2011, Vol. 5, Iss. 8, pp. 739–747
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the constant k in (26) as a diagonal matrix

k= F−1
L · diag{J0(2pfd1

Ts), J0(2pfd2
Ts), . . . , J0(2pfdL

Ts)} ·FL

(31)

where fd1
, fd2

, . . . , fdL
and FL are the Doppler shift for each

subchannel and an L × L Fourier matrix, respectively.
Similarly as before, we can apply sparse recovery
algorithms to solve for h(m).

3.3 Channel tracking via RLS

The RLS algorithm is widely used for tracking time-varying
processes. Here we consider further improving the UWA
channel estimation performance by integrating the RLS
algorithm with the sparse recovery algorithm. In particular,
we modify the objective function (11) as

min
h(m)[CL

∑m

i=i0

bm−i||y(i) − Ah(m)||22/2 + l(m)||h(m)||1 (32)

where i0 and m are the starting and ending points of the
weighted window, respectively. m is also the current time
where the channel estimate is to be obtained. b [ [0, 1) is
the forgetting factor chosen to tradeoff between the
convergence speed and the tracking performance [23].
Correspondingly, (14) and (15) are modified as

fl(m) (h(m)) =
∑m

i=i0

bm−i||y(i) − Ah(m)||22/2 + l(m)||h(m)||1 (33)

and

∂fl(m) (h(m)) = −AH
∑m

i=i0

bm−iy(i) − A
∑m

i=i0

bm−ih(m)

( )

+ l(m)∂||h(m)||1 (34)

We define

c(m) = AH 1 − b

1 − bm

∑m

i=i0

bm−iy(i) − Ah(m)

( )
(35)

Then (17) is modified as

c(m)(T ) = (1 − b)l(m)

1 − bm · h(m)(T )

|h(m)(T )|

|c(m)(Tc)| ≤ (1 − b)l(m)

1 − bm

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(36)

We can then apply the complex homotopy algorithm by
substituting y and l into (11) with

z(m) = 1 − b

1 − bm

∑m

i=i0

bm−iy(i) (37)
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and

j = (1 − b)l(m)

1 − bm (38)

respectively. The iterative procedure for updating (37)
becomes

z(m) = b− bm

1 − bm z(m−1) + 1 − b

1 − bm y(m) (39)

Similarly, we can integrate the RLS algorithm with other
sparse recovery algorithms such as OMP and YALL1. The
performance improvement by the RLS weighted sparse
recovery is determined by b and i0. For rapid time-varying
UWA channels, we set b small and control the weighted
window length by setting i0 close to m; while for relatively
slowly time-varying UWA channels, we choose b close to
1 and increase m 2 i0.

4 Optimised pilot placement

Although the best pilot placement for the LS channel
estimation in OFDM systems is equipowered, equispaced
and phase shift orthogonal [24], there is no general theory
on the optimised pilot placement for channel estimation
using sparse recovery algorithms. It is known that under the
noiseless condition, h in (8) can be recovered from y with
high accuracy when A satisfies the so-called RIP property
[25]. However, there is no known method to test in
polynomial time whether a given matrix satisfies RIP. Here
we propose to obtain the optimised pilot placement over Np

subcarriers through off-line training using either the
statistical channel model or the actual UWA channel
measurement data. Considering selecting Np pilot positions

from a total of Nd subcarriers, there are
Nd

Np

( )
possible

pilot placements. For example, if Np ¼ 12 and Nd ¼ 256,

we have
256
12

( )
= 1.27 × 1021 possible pilot placements.

Therefore it is computationally prohibitive to exhaustively
search for the optimised placement. We propose to use the
discrete stochastic approximation method to sequentially
search for a near-optimal pilot placement, which typically
exhibits a fast convergence [26].

We define the normalised mean-squared error (MSE)
corresponding to a pilot placement p and channel realisation
h for a specific channel estimation algorithm as

f (p, h, ĥ) = E{‖h − ĥ‖2
2}

||h||22
(40)

where the expectation is with respect to the channel noise,
p = {k1, k2, . . . , kNp

}, h and ĥ denote the pilot placement,

the channel realisation and the estimated channel,
respectively. Thus the average MSE over all possible
channel realisations is

g(p) = Eh{f (p, h, ĥ)} (41)

Our objective is then to find the optimised pilot placement
with the minimum average MSE for a specific sparse
744
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recovery algorithm, that is

min
p

g(p) (42)

The pilot placement optimisation procedure based on the discrete
stochastic approximation algorithm is summarised in Fig. 2.
Starting from a random pilot placement p, we run the
homotopy algorithm for different channel realisations to obtain
an averaged MSE. We then obtain another pilot placement by
randomly changing one pilot position of the current p. We run
the homotopy algorithm on the new pilot placement and
compare the average MSE with the previous one, and make a
choice for the next move. The above steps are repeated for a
number of iterations and at each iteration, the frequency of the
picked pilot placement is updated. The final choice of the pilot
placement is the one with the highest occurring frequency. We
perform the same procedure to optimise the pilot placements
for other sparse recovery algorithms, such as OMP and YALL1.

Although in theory Fig. 2 requires a memory size of p to store
the occupancy probabilities of all possible pilot placements, in
the actual implementation, the memory requirement is much
smaller. Noticing that most pilot placement will not occur at all
during the M iterations of the algorithm, we can use a memory
size of Nx ¼ MNp. In particular, an Nx × 1 vector p[m] ¼
[p[m, 1], . . . , p[m, Nx]]

T with elements p[m, i] [ [0, 1] and
Sip[m, i] ¼ 1 is initialised. We use a Nx × Np matrix P to

Fig. 2 Pilot placement optimisation
IET Signal Process., 2011, Vol. 5, Iss. 8, pp. 739–747
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store each selected pilot placement. Once entering Step 3, we first
search P to check whether pm+1 exists. If so, we store the found
row index of P into qm. Otherwise, we store pm+1 into P[m] and
set qm ¼ m + 1. Then we update p[m] where r[qm] is defined as
a Nx × 1 zero vector except with 1 for its qm-th element. In this
way we guarantee the component of P[m] for the same pilot
placement is unique.

5 Simulation results

Three BP algorithms including ℓ1-LS, SpaRSA and YALL1
are compared in [8] where YALL1 is concluded to be the
best. So in this section, we compare homotopy with
YALL1 and OMP. We use the following sparse multipath
channel model

c(t) =
∑S

i=1

aid(t− ti)

to obtain channel realisations. {ai}� CN (0, e−bti IS). b ¼ 1/
16 is the exponential power delay profile and ti is the delay
spread for the ith path [27]. In practice, we may replace the
simulated channel realisations with the real UWA channel
measurement data, if they are available. It is verified in [6]
that the simulations usually give the same performance
trend as the real UWA experiments.

The parameters used in our simulations are listed in
Table 1. The bandwidth of 4 kHz is centred around
fc ¼ 24 kHz and divided into 512 OFDM subcarriers,
among which 20 and 110 are used for pilots and null
subcarriers, respectively. The OFDM symbol length is
128.2 ms, which is the reciprocal of the subcarrier spacing.
The length of the guard interval is 16 ms or equivalently
NG ¼ 64 after sampling. A five-path channel with the
maximum channel delay spread L ¼ 50 is considered.
According to [6], mild Doppler spread with the velocity
standard deviation sy ¼ 0.1 is assumed, which results in
the Doppler spread at fc to be about 2.7 Hz.

5.1 Random pilot placement

We first use random pilot placement and compare homotopy,
OMP and YALL1 with RLS- and GM-enhanced counterparts
as shown in Fig. 3. The MSE of homotopy is better than that
of OMP, especially for SNR .25 dB. Homotopy and YALL1
are not much different. We combine the advantages of
the first-order GM model and the RLS-weighted sparse
recovery, which is denoted as RLS CS with GM. We set
the forgetting factor b ¼ 0.992 and weighted window
length m 2 i0 ¼ 12. It is observed from Fig. 3 that RLS
homotopy with GM performs better than RLS OMP with
GM. RLS YALL1 is inferior to the above two since the

Table 1 Parameters of the simulation

number of total subcarriers Nd ¼ 512

number of null subcarriers Nu ¼ 110

number of pilot subcarriers Np ¼ 20

length of zero padding NG ¼ 64

number of multipaths S ¼ 5

length of CIR L ¼ 50

carrier frequency fc ¼ 24 kHz

signal bandwidth B ¼ 4 kHz

Doppler spread at fc 2.7 Hz
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GM model cannot be incorporated by the YALL1 solver.
The complexities of these algorithms in terms of the CPU
running time are compared in Table 2 where SNR is fixed
to be 30 dB. The experiments are performed using
MATLAB v7.9 (R2009b) running on a Lenovo laptop with
an Intel Core 2 Duo CPU at 2.5 GHz and 2GB of memory.
Homotopy uses about 0.563 s, which is similar to 0.526 s
of OMP and much lower than 2.313 s of YALL1. RLS
homotopy with GM is about 0.02 s higher than homotopy.
Since OMP cannot always guarantee successful sparse
recovery and sometimes it has to run out of all matrix
columns, the time cost of OMP is even 0.05 s higher than
that of RLS OMP with GM.

5.2 Optimised pilot placement

We use the simulated UWA channel data to off-line train
the pilot placement for homotopy, OMP and YALL1,
each running 120 iterations with Fig. 2. We also compare
it with the exhaustive search of correspondingly 2400
iterations. As shown in Fig. 4, the algorithm converges to
a pilot placement with low MSE very fast. For all three
CS algorithms, the algorithm picks a pilot placement that
outperforms the best one out of 2400 exhaustive searches
in no more than 100 iterations. After 2400 iterations,
we obtain an optimised pilot placement for each of
homotopy, OMP and YALL1. From them, we select the
CS algorithm and corresponding optimised pilot placement
with the smallest MSE. According to Fig. 4, we select
homotopy and corresponding optimised pilot placement to
be (56, 66, 78, 99, 123, 163, 174, 184, 195, 219, 243,

Fig. 3 Performance of different CS algorithms with GM and RLS

Table 2 Running times of different CS algorithms

Algorithm type CPU time (in s)

Random pilot Optimised pilot

homotopy 0.563 0.561

OMP 0.526 0.453

YALL1 2.313 2.311

RLS homotopy with GM 0.584 0.583

RLS OMP with GM 0.475 0.474

RLS YALL1 2.328 2.328
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Fig. 5 Performance improvement with optimised pilot placement

Fig. 6 Performance improvement with the RLS, GM and optimised
pilot placement

Fig. 4 Convergence of pilot placement optimisation algorithm
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272, 290, 302, 312, 333, 344, 370, 417, 452). In Fig. 5, we
compare the random pilot and optimised pilot for different
CS algorithms. Since the MSE is averaged over 1000
channel realisations, we cannot guarantee the 1000 sparse
recovery to be always successful. The optimised pilot
placement shows its ability to kick out the case that the
CS algorithms fail or obtain large MSE, which leads to
about 6 dB improvement at SNR ¼ 30 dB. In Fig. 6, we
further compare RLS- and GM-modified CS algorithms with
the random pilot and optimised pilot, respectively. Homotopy
still proves to be the best. On the other hand, we also simulate
the traditional cubic-spline-interpolation-based LS channel
estimation. The same number of equal-spaced pilots is
employed. However, we always obtain the MSE larger than
103, which is out of the scale of Fig. 6.

6 Conclusions

We have treated the UWA OFDM channel estimation based
on sparse recovery using the complex version of the
homotopy algorithm. In addition, we have proposed two
enhancements to exploit the temporal correlation of the
UWA channel, including a first-order Gauss–Markov model
and the use of the RLS algorithm for tracking the time-
varying UWA channel. Moreover, we have proposed a pilot
placement optimisation scheme to further improve the
channel estimation performance. In practice, if actually
UWA channel measurement data is available, then we can
use them to obtain the optimised pilot placement over the
OFDM subcarriers. Simulation results show that the
proposed homotopy algorithm together with the Gauss–
Markov modelling and RLS tracking, as well as pilot
placement optimisation, offers substantial performance
improvement compared with the state-of-the-art UWA
channel estimators.
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