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Optimized Pilot Placement for Sparse Channel
Estimation in OFDM Systems

Chenhao Qi, Member, IEEE, and Lenan Wu

Abstract—Compressed sensing (CS) has recently been applied
for pilot-aided sparse channel estimation. However, the design of
the pilot placement has not been considered. In this letter, we pro-
pose a scheme using the modified discrete stochastic approxima-
tion to optimize the pilot placement inOFDMsystems. The channel
data is employed to offline search the near-optimal pilot placement
before the transmission. Meanwhile we also get a criterion to select
CS algorithms based on the mean squared error (MSE) minimiza-
tion. Simulations using a sparse wireless channel model have val-
idated the effectiveness of the proposed scheme, which is demon-
strated to be much faster convergent and more efficient than the
exhaustive search. It has been shown that substantial performance
improvement can be achieved for OMP and YALL1 based channel
estimation, where YALL1 is preferred.

Index Terms—Channel estimation, compressed sensing, discrete
stochastic approximation, pilot placement.

I. INTRODUCTION

A collection of sparse recovery algorithms has recently
emerged with the name compressed sensing (CS) [1],

which enables efficient reconstruction of sparse signals from
relatively few linear measurements. And more recently, CS
techniques have been applied for sparse channel estimation [2].
Sparse recovery algorithms including matching pursuit (MP),
orthogonal matching pursuit (OMP) and basis pursuit (BP) are
employed for the pilot-assisted channel estimation rather than
using traditional least squares (LS) methods [3]. Furthermore,
convex optimization solvers as SpaRSA [4], SPGL1, YALL1,
GPSR and -LS [5] can also be applied. However, few works
concern on the design of the pilot placement. Although the
best pilot placement for the LS channel estimation in OFDM
systems is equipowered, equispaced and phase shift orthogonal
[6], there is no general theory on the optimized pilot placement
for the channel estimation using sparse recovery algorithms.
In this letter, we investigate the pilot optimization for sparse

channel estimation in OFDM systems and propose a scheme
using modified discrete stochastic approximation to offline
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search the pilot placements before transmission. Since well-es-
tablished channel models are usually available in wireless
communications, it’s beneficial to take advantage of them
for pilot optimization at the transmitter. Even for underwater
acoustic communications [7], a collection of sampled real
channel data of specific sea area is accessible. Besides, our
scheme also presents a criterion to select CS algorithms based
on the mean-squared error (MSE) minimization.
The remainder of the letter is organized as follows. Section II

briefly describes the model of OFDM frequency-domain
channel estimation and formulates as a sparse recovery
problem. Section III proposes a scheme using modified discrete
stochastic approximation to optimize the pilot placement.
Simulation results are given in Section IV. Finally, Section V
concludes the letter.
The notation used in this letter is according to the conven-

tion. Symbols for matrices (upper case) and vectors (lower case)
are in boldface. , , , , , , ,

and denote transpose, conjugate transpose (Hermi-
tian), -norm, -norm, the set of real number, the set of in-
tegers, the diagonal matrix, the identity matrix with dimension
, the by zero matrix and the complex Gaussian distribu-
tion, respectively. means the order. denotes the estimate
of the parameter of interest .

II. SYSTEM MODEL

Considering an OFDM system with subcarriers, among
which subcarriers are selected as pilots with positions rep-
resented by
and subcarriers are used for data
transfer, we denote the transmit pilot symbols and the re-
ceive pilot symbols as and

, respectively. Then the OFDM
frequency-domain channel estimation is formulated as [8]

(1)

where ,
is a submatrix selected by the row indices

and column indices
from the standard Fourier matrix,

,
is the equivalent sampled channel impulse response

(CIR) with length , and
is the noise term. Since the system

sampling interval is usually much smaller compared to the
channel delay spread, most channel coefficients are either zero
or nearly zero, which means that is a sparse vector. If has
more rows than columns, i.e., , then (1) is a standard
LS problem with the estimated CIR
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(2)

Nevertheless, we are more interested in the sparse case with
, i.e., the number of pilots is less than the number of

channel coefficients. Considering that has nonzero
components, with , we can recover from (1) by solving
the following -norm minimization problem

(3)

where counts the number of nonzero elements of . This is
an NP-hard combinatorial problem. However, it can be replaced
by the following -norm optimization problem

(4)

which can be solved by quadratic programming (QP) and some
other convex optimization algorithms. Recent advances in CS
show that under noiseless condition can be recovered from the
measurement with high accuracy when dictionary matrix
satisfies the restricted isometry property (RIP) [9]. It’s also ob-
served that the pilot design can be regarded as the measurement
design in sparse recovery. However, so far there is no known
method to test in polynomial time whether a given matrix satis-
fies RIP.
Considering the fact that the channel data is usually available

at the transmitter side, intuitively we can use the channel data
to offline train the pilots and exhaustively search the best pilot
from all possible pilot placements. It makes no change to the
sparse channel estimation at the receiver side. However, such
an exhaustive search method is computationally prohibitive.

III. PILOT OPTIMIZATION

Suppose selecting pilot subcarriers from a total of sub-
carriers, there are possible pilot placements. For example,

if and , we have pos-
sible pilot placements. It’s computationally prohibitive to ex-
haustively search all the pilot placements for the best one. Here
we propose a scheme using modified discrete stochastic approx-
imation to sequentially search a near-optimal pilot placement,
which typically exhibits fast convergence [10]. The basic idea
is to generate a sequence of the estimates of the optimal pilot
subset where the new estimate is based on the previous one
by moving a small step in a good direction towards the global
optimizer. Through the iterations, the global optimizer can be
found bymeans of maintaining an occupation probability vector
which indicates an estimate of the occupation probability of

one state (i.e., pilot subset). Under certain conditions, the algo-
rithm converges to the state which has the largest occupation
probability in . Compared with the exhaustive search, more
computations of this algorithm are performed on the promising
candidates and the better candidates will be evaluated more than
the others.
We define the normalized MSE corresponding to a pilot

placement and channel vector for a specific channel esti-
mation algorithm (i.e., OMP, YALL1) as

(5)

where the expectation is with respect to the channel noise,
, and denotes the estimated channel using

alg. Once is given, we can produce and . Then we get
an from and through . So the averaged MSE over all
possible channel data available at the transmitter is

(6)

where we approximate this ensemble average over by the
sample average, which means to average over all available
channel realizations of . Our objective is to minimize the av-
eraged MSE of channel estimation for different CS algorithms.
The near-optimal pilot placement corresponding to is

(7)

Meanwhile we also get a criterion as

(8)

to select CS algorithms. After the same number of iterations, the
CS algorithm with the minimum MSE is selected.
The procedure to optimize the pilot placement is summa-

rized in Algorithm 1. Let , and denote pilot place-
ments at the th iteration and suppose the number of all pos-
sible pilot placements to be . The auxiliary matrix

is constructed with each row

(9)

to store a different pilot placement. The state occupation prob-
ability at the th iteration is represented by

(10)

Algorithm 1 is divided into five steps. We start from a random
pilot placement and initialize both and to be zero, as
described in Step 0. Then given and from the last
iteration, we obtain a new pilot placement by sequentially
changing one pilot position of . Unlike randomly generating

in aggressive and conservative discrete stochastic approx-
imation [11], every time we only change one pilot position of
previously generated pilot placement, which reduces the com-
putational complexity from to [12]. We
run for all available channel data to obtain a new averaged
MSE and compare it with . We make a choice for
the next move towards the global optimizer. At each iteration,
the frequency of the selected pilot placement is updated. We up-
date by

(11)
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where is defined as a zero vector except for its
th element to be 1. The final choice is the optimized pilot

placement and believed to converge to the global optimum [11].
Therefore we can perform the same procedure for different
(i.e., OMP, YALL1), from which we choose the CS algorithm
with the smallest .

In theory Algorithm 1 requires a large memory size such as
floating-point units to store the occupancy

probabilities of all possible pilot placements. However in the ac-
tual implementation, the memory requirement is much smaller.
Noticing that most pilot placement will not be selected, we can

TABLE I
PARAMETERS OF THE SIMULATION

shrink the row dimension of and to . Instead
of keeping records for all candidates, we dynamically allocate
and maintain record in for the new pilot placement found in
each iteration. If a pilot placement already has a record in ,
the corresponding occupancy probability will be updated. Oth-
erwise, a new element is appended in with its index and oc-
cupation probability. Such a dynamic scheme avoids the huge
memory requirement since typically in practice only a small
fraction of all possible subsets is visited. Therefore we only have
to store each selected pilot placement in . Once entering Step
3, we first search in to check whether exists. If so, we
store the found row index of into . Otherwise, we store

into and set . In this way we guar-
antee the pilot placement in is unique.

IV. SIMULATION RESULTS

We consider the following sparse multipath channel model

(12)

to obtain a set of channel data at the transmitter. is a set
of independent and identically distributed (i.i.d.) random vari-
ables which satisfy . is the expo-
nential power delay profile and is the delay spread for the th
path [13]. The parameters used in our simulations are listed in
Table I. A zero CIR vector with the length is first gen-
erated, where positions are randomly selected as channel
taps. Then we produce as the attenuation for each path.

channel realizations with the sparsity
are generated. Considering the oversampling of most OFDM
systems, the actual sparity is even smaller [14]. In practice, we
may replace the above simulated channel realizations with the
real channel data, which cannot be infinite since it’s collected
by countable field measurements.
We run Algorithm 1 for iterations to optimize the

pilot placement for OMP and YALL1 [15], respectively. The
stop condition is

(13)

according to (4). At each iteration, we generate pilot placements
by one-by-one sequentially changing the pilot position, which
corresponds to the exhaustive search for totally
iterations. As shown in Fig. 1, we compare theMSE of OMP and
YALL1 using Algorithm 1 and the exhaustive search, respec-
tively. Algorithm 1 forOMP exceeds the best of 2400 exhaustive
search by no more than 48 iterations, which proves much faster
convergent and more efficient. It’s demonstrated in [10] that
with the growing number of iterations, it will converge to the
global optimum. Considering the computational complexity
of Algorithm 1, it’s roughly [12]. And since we
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Fig. 1. Convergence of the pilot placement optimization using Algorithm 1.

Fig. 2. Performance improvement with the optimized pilot placement.

alwaysoffline train thepilot placement before the transmission, it
won’t bring any additional complexity to the channel estimation
at the receiver. According to Fig. 1 and the criterion (8), YALL1
is preferred since its MSE is lower than OMP at the stop point.
In Fig. 2, we compare the MSE of random pilot and opti-

mized pilot for both OMP and YALL1. We run 1000 iterations
for each SNR point, where 1000 OFDM symbols are used for
each iteration. The improvement with the pilot optimization is
more than one order of magnitude at high SNR conditions, i.e.,

. In particular, OMPwith the optimized pilot even
outperformsYALL1with the randompilot. The reason is that the
MSEisaveragedoverall channeldataat the transmitter, sowecan
not guarantee the sparse recovery to be always successful for the
randompilotplacement.While for theoptimizedpilotplacement,
the sparse recovery is improved since Algorithm 1 has already
eliminated the cases that the CS algorithm fails or obtains large
MSE. Therefore, the pilot optimization at the transmitter is ben-
eficial, especially for the heuristic CS algorithms. Considering
the fact that the best pilot placement for LS channel estimation is
equispaced [6], we also simulate the cubic-spline-interpolation
based LS channel estimation with . However, the
spectral efficiency has reduced from 95.3% to 75%.

V. CONCLUSION

In this letter, we have investigated the pilot placement for the
sparse channel estimation in OFDM systems.We have proposed
a scheme using modified discrete stochastic approximation to
offline search the pilot placements before transmission. Mean-
while a criterion to select CS algorithms based on theMSEmin-
imization is also presented. Simulations using a sparse wireless
channel model have validated the effectiveness of the proposed
scheme, which is demonstrated to be much faster convergent
and more efficient than the exhaustive search. It has been shown
that substantial performance improvement can be achieved for
OMP and YALL1 based channel estimation, where YALL1 is
preferred. Future work will continue to explore effective ap-
proaches for pilot design and low complexity CS algorithms,
as well as the possible tradeoff between the data rate and the
channel estimation accuracy.
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