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Abstract This work investigates the estimation of target scattering coefficients (TSC)
in cognitive radar systems with temporally correlated targets. An estimation method
based on Kalman filtering (KF) is proposed to exploit the temporal TSC correlation
between the pulses in the frequency domain. To minimize the mean square error of
the estimated TSC at each KF iteration, unlike existing indirect methods, in this paper
the radar waveform is optimized directly under the constraints of transmitted power,
peak-to-average power ratio (PAPR) and detection probability. Since the optimization
problem regarding the waveform design is non-convex, a novel method is proposed
to convert this problem into a convex one. Simulation results demonstrate that the
performance of the TSC estimation for the temporally correlated target is significantly
improved by radar waveform optimization. Meanwhile, no performance degradation
is observed with the introduction of the additional PAPR constraints and the detection
constraints for KF estimation with the optimized waveform.
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1 Introduction

In cognitive radar systems (CRS), the transmitted waveform can be designed in such
a way that it adapts to the environments and characteristics of the targets, which thus
improves the overall target detection and recognition performance [9]. The extended
target in CRS,which can occupymore than one resolution cell, is often described using
either the target impulse response (TIR) in the time domain [1] or the target scattering
coefficients (TSC) in the frequency domain [27]. The estimation performance of the
TSC or the TIR can be improved by optimizing the transmitted waveform [28]. In gen-
eral, there are two popular criteria for waveform optimization [1,5,16]. One is based
on the signal-to-noise ratio (SNR) or the signal-to-interference-and-noise ratio (SINR)
of the echo signal. The other is based on the mutual information shared between the
echo signal and the TSC. In practice, many different constraints must also be consid-
ered during the waveform optimization, including the constraints for the range and
velocity resolutions and the constraint of constant envelope considering the efficiency
of the nonlinear power amplifier [15,18]. However, in the existing works on waveform
design for temporally correlated targets, only indirect methods based on water filling
have been proposed.

Generally, there are three methods to model the extended target, including

1. Modeling of the extended target as a determinant TIR function, which remains
constant during the waveform design [6,7];

2. Modeling of the extended target as a random process with an unknown distribu-
tion [1];

3. Modeling of the extended target as a random process with a known distribution,
e.g., the Swerling I or Gaussian distribution [16,19,22].

However, considering the fact that the slow change of the angle in the target view leads
to the TSC temporal correlation during each pulse repetition interval (PRI) [3], a more
appropriate model based on wide sense stationary-uncorrelated scattering (WSSUS)
has been proposed [4,29] to describe the extended target. This type of extended target
is named in short as a temporally correlated target in this work.

In the study ofCRS, increasing attention is being paid to radarwaveformdesignwith
a constant envelope, and many methods have been proposed [13,14,25]. For exam-
ple, an orthogonal frequency division multiplexing (OFDM) signal with a constant
envelope was optimized in [12,24]. Because this constant envelope constraint is too
strict, the peak-to-average power ratio (PAPR) can be used as a relaxed form [17,20–
22]. In the same context, radar waveform design under the PAPR constraint has been
considered in [22]. However, waveform design for a temporally correlated target has
not been investigated thoroughly. Even if the radar systems cannot provide precise
estimation of the TSC, the binary detection in terms of presence or absence of the
target is still needed. Thus, the detection ability is essential during the waveform
optimization [11,26].

In this work, an estimation method based on Kalman filtering (KF) in the frequency
domain is proposed to exploit the temporal correlation of the TSC. Moreover, to min-
imize the mean square error (MSE) of the estimated TSC at each KF iteration, unlike
existing indirect methods, the radar waveform is optimized directly by the proposed
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method under the constraints of the transmitted power, the PAPR and the detection
probability. Since the waveform optimization problem is non-convex, a novel method
is proposed to solve it by converting the existingnon-convexproblem into a convexone.

This manuscript is organized as follows. In Sect. 2, the radar system with the
temporally correlated target is described. The TSC estimation method based on KF
is proposed. In Sect. 3, optimization of the radar waveform under the constraints of
the transmitted power, the PAPR and the target detection probability is presented.
Simulation results are given in Sect. 4, and finally Sect. 5 concludes this work.

The notations used in this work are defined as follows. Symbols for vectors (lower
case) and matrices (upper case) are in bold face. I , N (0,R), (·)H , diag {·}, E {·}, F,
‖·‖2, Re {·} and Tr {·} denote the identity matrices, the Gaussian distribution with zero
mean and covariance of R, the conjugate transpose (Hermitian), the diagonal matrix,
the expectation, the Fourier transform, the �2 norm, and the real part and the trace of
a matrix, respectively.

2 Cognitive Radar System and TSC Estimation Based on KF

The CRS with the temporally correlated target that is considered in this work is shown
in Fig. 1, where the echo signal rk during the kth pulse includes the additive colored
Gaussian noise nk ∼ N (

0,R′
N

)
with zero mean and covariance matrix being R′

N . In
the presence of a target, the echo signal can be modeled as

rk = Hksk + nk, (1)

where sk ∈ R
M×1 denotes the transmitted radar waveform during the kth pulse, and

Hk denotes the convolution matrix of the TIR hk , which can be written as

Hk =

⎛

⎜⎜⎜⎜
⎜
⎝

hk,1 hk,M . . . hk,2
hk,2 hk,1 . . . hk,3

...
...

. . .
...

hk,M−1 hk,M−2 . . . hk,M
hk,M hk,M−1 . . . hk,1

⎞

⎟⎟⎟⎟
⎟
⎠

, (2)

where hk,m(m = 1, . . . , M) denotes the mth entry of the TIR hk .

Fig. 1 CRS with temporally correlated target
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Because a relative change in the viewing angle between the target and the radar
causes the fluctuation in the TIR, the WSSUS model can be used to describe this
fluctuation. Therefore, the TIR hk during the kth pulse can be represented as

hk = e−T/τhk−1 + uk−1, (3)

where uk−1 ∼ N (
0,
(
1 − e−2T/τ

)
R′
T

)
denotes the zeromeanGaussian vector, which

describes theTIRfluctuation [3,4,29].R′
T ,T and τ denote, respectively, the covariance

matrix of the TIR hk , the PRI and a constant that describes the temporal correlation
of the TIR during the PRI.

Then, the echo signal in the frequency domain is

yk = Frk = Zkgk + wk, (4)

where F denotes the Fourier transform matrix, wk ∼ N
(
0,RN � FR′

NF
)
denotes

the additive Gaussian noise in the frequency domain, zk � Fsk , Zk � diag {z} is a
diagonal matrix of the radar waveform in the frequency domain, and gk � Fhk , with
gk ∼ N (0,RT ).

With its knowledge of both the target and the environment, the CRS can provide bet-
ter target detection and classification performance than traditional radar systems. First,
we will give an estimation algorithm based on the maximum a posteriori probability
(MAP).

In the presence of a target, we have yk ∼ N (0,Rk), where

Rk � E
{
(Zkgk + wk) (Zkgk + wk)

H
}

(5)

= ZkRTZH
k + RN .

In the absence of a target, we have yk ∼ N (0,RN ). Therefore, the TSC estimation
algorithm based on MAP can be expressed as

ĝk = argmax
gk

p (gk | yk) . (6)

From (4) to (6),we canobtain the estimatedTSC (with the details provided inAppendix
1) as

ĝk = argmin
gk

{
gHk

(
ZH
k R−1

N Zk + R−1
T

)
gk − yHk R−1

N Zkgk − gHk ZH
k R−1

N yk
}

. (7)
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Algorithm 1 TSC estimation based on the KF
1: Set the iteration index to k = 2, where the maximum number of iterations is Kmax. The MAP method

is used to estimate the TSC

ĝ 1|1 = Q1y1, (8)

and the initial MSE matrix of the estimated TSC is

p 1|1 = E
{
(Q1y1 − g1) (Q1y1 − g1)

H
}

(9)

= Q1

(
Z1R1Z

H
1 + RN

)
QH
1 − Q1Z1RT − RTZ

H
1 QH

1 + RT ,

where Q1 is the MAP filtering matrix;
2: while k ≤ Kmax do
3: Because of the temporal correlation of TSC, we can obtain the TSC prediction from (3):

ĝ k|k−1 = e−T/τ ĝ k−1|k−1; (10)

4: Based on the predicted TSC, the estimated MSE matrix is

P k|k−1 = e−2T/τP k−1|k−1 +
(
1 − e−2T/τ

)
RT ; (11)

5: We define the Kalman gain matrix as

�k � P k|k−1Z
H
k

(
QkRN + QkZkP k|k−1Z

H
k

)−1 ; (12)

6: The estimated TSC are then

ĝ k|k = ĝ k|k−1 + �k
(
ĝk − QkZk ĝ k|k−1

)
(13)

where ĝk = Qyk ;
7: The MSE matrix is

P k|k = P k|k−1 − �kQkZkP k|k−1; (14)

8: Let k = k + 1;
9: end while

Then, the estimated TSC based on the MAP are

ĝk =
(
ZH
k R−1

N Zk + R−1
T

)−1
ZH
k R−1

N yk, (15)

and the MAP filtering matrix is

Qk =
(
ZH
k R−1

N Zk + R−1
T

)−1
ZH
k R−1

N . (16)
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The MSE of the MAP estimation is

eMAP = E
{∥∥ĝk − gk

∥∥2
2

}
(17)

= Tr
{
QH

k Qk

(
ZkgkgHk ZH

k + RN

)
− gHk

(
ZH
k QH

k + QkZk − I
)
gk
}
.

In this work, a TSC estimation method based on KF with MAP estimation is
proposed to take advantage of the TIR temporal correlation. The prediction and the
estimation are combined to improve the estimation performance. The details are given
in Algorithm 1.

3 Waveform Optimization Under Detection and PAPR Constraints

To ensure the efficiency of the nonlinear power amplifier, the power amplifier must
operate in the linear region. Therefore, the PAPR of the transmitted signal must be
below a certain threshold. In addition, the radar systems must be able to detect the
target when the estimated TSC cannot be obtained accurately. After consideration
of these two factors, we optimize the radar waveform to minimize the MSE of the
estimated TSC at each KF iteration step under the constraints of PAPR and detection
probability. This optimization problem can be described as

s∗k = argmin
sk

{
f (zk) � Tr

{
P k|k

}}
(18)

s.t. ‖sk‖22 = Es

PAPR (sk) ≤ ζ

PD (PFA) ≥ ε

zk = Fsk,

where ‖sk‖22 = Es is the constraint for transmitted power, PAPR (sk) ≤ ζ is the
constraint for PAPR, and PD (PFA) ≥ ε is the constraint for the detection probability
with the false alarm rate PFA. The objective function is the MSE of the estimated TSC
based on the KF, which can be simplified as follows

P k|k = P k|k−1 − P k|k−1ZHQH (QRNQ
H + QZP k|k−1ZHQH )−1QZP k|k−1 (19)

=
(
P−1
k|k−1 + ZHR−1

N Z
)−1

,

where the Woodbury identity1 is adopted in the matrix calculation above.

1
(
A + CBCH

)−1 = A−1 − A−1C
(
B−1 + CHA−1C

)−1
CHA−1.
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3.1 Simplification of the Optimization Problem

To solve the optimization problem of (18), we must first simplify the constraints. The
PAPR is defined as

PAPR (sk) � 10 log10

(

M
max1≤m≤M

∣∣sk,m
∣∣2

sHk sk

)

, (20)

where sk,m denotes the mth entry of sk . The PAPR constraint can then be rewritten as

max
1≤m≤M

∣∣sk,m
∣∣2 ≤ 10ζ/10

M
sHk sk = 10ζ/10

M
Es � ζ ′Es . (21)

The constraint for target detection is simplified as follows. During the target detec-
tion, the detection performance can be improved significantly by the knowledge of
the TSC. However, the TSC are unknown, and thus an estimate of the TSC based on
the KF is needed to design the radar waveform and subsequently to detect the target.
If we assume that H1 and H0 represent the presence and the absence of the target,
respectively, then the distributions of the echo signals are

yk | H0 ∼ N (0,RN ) (22)

yk | H1 ∼ N (
Zĝk,RN

)
, (23)

where ĝk are the estimated TSC based on the KF. Then the target detection likelihood
ratio is:

l ′ (yk) = N (
Zk ĝk,RN

)

N (0,RN )

H1

�
H0

θ ′ (24)

⇒ l (yk) = yHk R−1
N

(
Zk ĝk

) H1

�
H0

θ,

where θ denotes the detection threshold. The false alarm rate based on the constant
false alarm rate (CFAR) is given by

PFA = P
(
wH
k R−1

N

(
Zk ĝk

) ≥ θ
)

(25)

= Q

⎛

⎝ θ
√(

Zk ĝk
)H R−1

N

(
Zk ĝk

)

⎞

⎠ ,

where Q (x) = 1√
2π

∫∞
x exp

(
−μ2

2

)
dμ is the Q-function. The detection threshold in

(24) is

θ (PFA) = Q−1 (PFA)

√(
Zĝk

)H R−1
N

(
Zĝk

)
. (26)
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The target detection probability can then be obtained as

PD (PFA) = Q

(
Q−1 (PFA) −

√(
Zk ĝk

)H R−1
N

(
Zk ĝk

))
. (27)

With a sufficiently large number of KF iterations, the estimated TSC will approach
the real TSC, i.e., gk ≈ ĝk . Since Q (x) is a monotonically decreasing function of x ,
the constraint PD (PFA) ≥ ε can then be written as

p (zk) � zHk ĜH
k R−1

N Ĝkzk ≥ ε′, (28)

where Ĝk � diag
{
ĝk
}
. This optimization problem is non-convex, where the optimum

radar waveform cannot be directly obtained. Therefore, we now propose a method to
minimize the MSE of the estimated TSC for each KF iteration. Let

Tk � Vk ◦ R−1
N , (29)

where ◦ denotes the Hadamard product, and Vk �
(
zkzHk

)T
. Then the objective

function f (zk) from (18) is

f (zk) = Tr

{(
P−1
k|k−1 + Vk ◦ R−1

N

)−1
}

. (30)

Finally, (18) can be written as

z∗
k = argmin

zk
Tr

{(
P−1
k|k−1 + Vk ◦ R−1

N

)−1
}

(31)

s.t. zHk z = Es
√

ζ ′Es I − diag
{
F−1zk

}
� 0

√
ζ ′Es I + diag

{
F−1zk

}
� 0

p (zk) ≥ ε′,

where A � 0 indicates that A is a semidefinite matrix. The target detection con-
straint is described by the function p (zk), which can achieve a maximum value via
eigen-decomposition [23]. When zk is the eigenvector corresponding to the maximum
eigenvalue of the matrix Lk � ĜH

k R−1
N Ĝk , we have the maximum value of p (zk) as

λmaxvHmaxvmax = λmaxEs = max
zk

p (zk) , (32)

where λmax is the maximum eigenvalue of Lk and vmax is the corresponding max-
imum eigenvector. Therefore, λmaxvHmaxvmax ≥ ε′ is a necessary condition for the
optimization problem in (31).
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3.2 Solution of the Optimization Problem

In this subsection, we will solve the optimization problem given by (31). Because this
problem cannot be directly solved, we will discuss in two cases. In the first case, we
do not consider the PAPR constraint, which is equivalently to assume that both P k|k−1
and RN are diagonal matrices. We can simplify the optimization problem in (31) and
lead it to be a convex problem, where an analytical expression can be derived. In the
second case, we take the PAPR constraint into account, and (31) is non-convex. Then
we propose a novel method to convert it into a convex problem.

If we do not consider the PAPR constraint, which is equivalently to assume that
both P k|k−1 and RN are diagonal matrices, we can rewrite the optimization problem
in (31) as

z∗ = argmin
zk

M∑

m=1

Pk|k−1,m RN ,m

RN ,m + zHk,mzk,m Pk|k−1,m
(33)

s.t. zHk zk = Es
√

ζ ′Es I − diag
{
F−1zk

}
� 0

√
ζ ′Es I + diag

{
F−1zk

}
� 0

p (zk) ≥ ε′,

where zk,m denotes the mth entry of zk and Pk|k−1,m and RN ,m denote the mth row
and mth column of P k|k−1 and RN , respectively.

To solve the optimization problem in (33), we use the Lagrange function as

g (zk, λ1, λ2) �
M∑

m=1

Pk|k−1,m RN ,m

RN ,m + zHk,mzk,m Pk|k−1,m
+ λ1

(
p (zk) − ε′)

+ λ2

(
zHk zk − Es

)
. (34)

The extreme value of (34) can be attained using

∂g (z, λ1, λ2)

∂ ‖zm‖22
= 0, (35)

where

∂g (z, λ1, λ2)

∂ ‖zm‖22
= − Pk|k−1,m RN ,m Pk|k−1,m

(
RN ,m + zHk,mzk,m Pk|k−1,m

)2 + λ1Lk,m,m + λ2, (36)
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with Lk,m,m denoting the entry at mth row and mth column of Lk . Therefore, we can
obtain the optimized waveform zk without the PAPR constraint as

∥
∥zk,m

∥
∥2
2 = max

{√
RN ,m

λ1Lk,m,m + λ2
− RN ,m

Pk|k−1,m
, 0

}

(37)

where λ1 and λ2 are used to control the detection performance and the transmitted
power.

However, if the PAPR constraint is considered, P k|k−1 andRN are no longer diago-
nal matrices. It is not easy to obtain an analytical expression for (31). Nowwe propose
a novel method to solve this problem.

In the first step, we define Wk � sksHk , where W is a real and symmetric matrix.
Then we have

W∗
k = argmin

Wk
Tr

{[
P−1
k|k−1 +

(
FWkFH

)T ◦ R−1
N

]−1
}

s.t. Tr {Wk} = Es (38)

Tr
{
ĜH

k R−1
N ĜkFWkFH

}
≥ ε′

diag {Wk} ≤ ζ ′Es .

According to [2], the objective function Tr
{
(·)−1} is a convex function. Compared

with (31), (38) relaxes the rank {W} = 1 constraint, resulting in a convex optimization
problem. Therefore, the CVX toolbox can be used to solve this problem [8], and we
can then obtain the optimal real symmetric matrixW∗

k .
In the second step, we must obtain the optimal waveform based on W∗

k . If
rank

{
W∗

k

} = 1, then we have

W∗
k = s∗ks∗Hk , (39)

where s∗k is the optimum radar waveform in the time domain. If the rank
{
W∗

k

}
> 1,

then according to [10], we can use the eigenvector cmax of W∗
k with the maximum

eigenvalue acting as the reference signal. Then, the optimization problem can be
represented as

s∗k = argmin
s0

∥
∥∥∥s0 − √

Es
cmax

‖cmax‖2

∥
∥∥∥
2

(40)

s.t. ‖s0‖22 = Es

− √
ζ ′Es ≤ s0 ≤ √

ζ ′Es

sH0
(
FH ĜH

k R−1
N ĜkF

)
s0 ≥ ε′,

where the objective function ensures that the optimizedwaveform s∗k canwell approach
the direction of the eigenvector cmax. The three constraints, including the first con-
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straint for the transmitted power, the second for thePAPR, and the third for the detection
probability constraint, ensure that the optimal waveform satisfies the conditions con-

sidered in this work. Because the constraint sH0
(
FH ĜH

k R−1
N ĜkF

)
s0 ≥ ε′ in (40) is

not a convex set, we must relax this constraint. Suppose umax is the eigenvector cor-
responding to the maximum eigenvalue θmax of U � FH ĜH

k R−1
N ĜkF. The detection

constraint is

sH0 Re {umax} ≥
√

ε′
θmax

. (41)

According to the matrix eigenvalue decomposition,

U =
∑

k

θkwkwH
k . (42)

BecauseU is a semidefiniteHermitianmatrix, thenwe can obtain that sH0
(
FH ĜH

k R−1
N

ĜkF
)
s0 ≥ ε′ from (41). The optimization problem of (40) can then be written as a

convex problem:

s∗k = argmin
s0

∥
∥∥∥s0 − √

Es
cmax

‖cmax‖2

∥
∥∥∥
2

(43)

s.t. ‖s0‖22 = Es

− √
ζ ′Es ≤ s0 ≤ √

ζ ′Es

sH0 Re {umax} ≥
√

ε′
θmax

.

The optimal radar waveform with rank
{
W∗

k

}
> 1 can be obtained via the CVX

toolbox.

4 Simulation Results

4.1 Transmitted Power Constraint

First, we give the estimation performance only with the constraint for the transmitted
power. (38) can then be simplified as the following optimization problem (with the
derivation details given in Appendix 2)

W∗
k = argmin

W
Tr

{[
P−1
k|k−1 +

(
FWFH

)T ◦ R−1
N

]−1
}

(44)

s.t. Tr {W} = Es .
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If rank
{
W∗

k

} = 1, then the optimal radar signal s0 is

W∗
k = s∗ks∗Hk . (45)

If rank
{
W∗

k

}
> 1, then the optimal transmitted signal s∗k is

s∗k = √
Es

cmax

‖cmax‖2 . (46)

The estimation performance of the optimal radar waveform based on (46) is compared
with that of the random radar waveform. The simulation parameters are set as follows:
the transmitted power is Es = 1, the signal length is L = 10, the SNR of the echo
signal is 7dB, the temporal correlation constant is τ = 0.1ṡ, and the PRI is T = 1ms.
To average the estimation performance, the number of random targets is set to be
50. The estimation performance is measured based on the normalized MSE, which is
defined as

eN � E
{∥∥ĝ − g

∥∥2
2

‖g‖22

}

, (47)

where ĝ is the estimate of g. For MAP estimation, we can obtain the expression for
the normalized MSE with the specific waveform sk as

eN = 1

‖gk‖22
Tr

{
QH

k Qk

(
ZkgkgHk ZH

k + RN

)
− gHk

(
ZH
k QH

k + QkZk − I
)
gk
}

,

(48)

where Zk = diag {Fsk}. For KF estimation at the kth iteration, the analytical expres-
sion for the normalized MSE of the waveform sk is

eN = 1

‖gk‖22
diag

{
P k|k−1 − �kQkZkP k|k−1

}
, (49)

where the symbols are as defined in Algorithm 1 and Zk = diag {Fsk}.
Figure 2 shows the normalized MSE of the estimated TSC, including the MAP

and KF estimation methods. Because the KF can take advantage of the temporal TSC
correlation, the performance of the KF estimation is better than that of the MAP
method. Moreover, the performance can be further improved by optimizing the radar
waveform via the proposed method.

4.2 Target Detection Probability Constraint

The feasibility of the waveform optimization method proposed in this work will be
verified in the following. Without the PAPR constraint, we can obtain the optimized
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radar waveform from (38) and (43) under the detection constraint. The optimization
problem can then be rewritten as

W∗
k = argmin

W
Tr

{[
P−1
k|k−1 +

(
FWFH

)T ◦ R−1
N

]−1
}

s.t. Tr {W} = Es (50)

Tr
{
ĜH

k R−1
N ĜkFWFH

}
≥ ε′.

The radar waveform from (43) can then be attained with some modifications as

s∗k = argmin
s0

∥
∥∥∥s0 − √

Es
cmax

‖cmax‖2

∥
∥∥∥
2

(51)

s.t. ‖s0‖22 = Es

sH0 Re {umax} ≥
√

ε′
θmax

.

We first verify the constraint for detection probability during the waveform opti-
mization. In the simulation, the false alarm probability is PFA = 0.05, the detection
probability is PD ∈ [0.9, 0.99], and temporal correlation constants of the TSC during
the radar pulse intervals are τ = 0.05s, τ = 0.1s, and τ = 0.15s. For the compari-
son, τ = ∞ represents the unchanged TSC during the radar pulse interval. Figure 3
depicts the simulated target detection probability with different temporal correlation

Iteration Index
2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 M
SE

0.2

0.4

0.6

0.8

1

1.2

1.4 Random waveform based on MAP estimation algorithm
Optimizing waveform based on MAP estimation algorithm (Es)

Random waveform based on Kalman estimation algorithm
Optimizing waveform based on Kalman estimation algorithm (Es)

Fig. 2 Normalized MSE of the estimated TSC under the transmitted power constraint
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Fig. 3 Probability of target detection

constants and different constraints for detection probability. The figure shows that
the simulated detection probability and the theoretical detection probability have a
relatively high degree of agreement. Also, a larger TSC correlation between radar
pulses leads to a higher degree of agreement. The difference between the simulated
and theoretical target detection probabilities is mainly because the estimated TSC
are based on the KF rather than the real TSC during radar waveform optimization.

sH0 Re {umax} ≥
√

ε′
θmax

is used as a sufficient condition to satisfy the constraint of
detection probability, which gives better performance than that using a prespecified
constraint.

In the simulation, the PAPR is < 3dB, with the simulation results shown in Fig. 4.
When the temporal correlation of TSC is sufficiently high, the simulated detection
probability and the theoretical detection probability show a relatively high degree
of agreement. However, the comparison with the simulated results shown in Fig. 3
without the PAPR constraint indicates that the PAPR constraint has little effect on the
detection performance.

4.3 The PAPR Constraint

In this subsection, the simulated radar waveform optimization results under the trans-
mitted power, PAPR and detection constraints are presented, where the temporal
correlation constant is τ = 0.1s. We set the PAPR constraint to be PAPR ≤ 3dB.
Then, we obtained the optimized waveform using the proposed method. To verify
the feasibility of this PAPR constraint during waveform optimization, the differences
between thePAPRof the optimizedwaveformand thePAPRconstraint at each iteration
are shown in Fig. 5, where the PAPR constraint of 3dB is subtracted from the PAPR
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Fig. 4 Probability of target detection under the PAPR constraint

Fig. 5 Difference between simulated and set PAPR

of the optimized waveform. Because the results of subtraction during all iterations are
positive, the PAPR of the optimizedwaveformmust satisfy the preset PAPR constraint.
However, the high agreement between the simulation and the PAPR constraint shows
that the PAPR has a bad effect on the TSC estimation performance, but leads to high
nonlinear power amplifier efficiency. Because the PAPR performance of the optimized
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waveform is a constraint condition in the waveform design optimization problem pro-
posed in this work, this performance cannot be improved by the optimization method.
However, the optimized waveform does satisfy the PAPR constraint, which means
that we can set the PAPR constraint before the waveform optimization process in the
radar system. Then, an optimized waveform with a specific PAPR constraint can be
obtained.

4.4 PAPR and Detection Constraints

Figure 6 depicts the estimation performance of the KF and MAP methods under the
following constraints: PAPR≤ 3dB, Es = 1, PFA = 0.05 and PD = 0.95. The KF
shows a better estimation performance than theMAP estimationmethod. Additionally,
we compare the estimation performances of the optimized and random radar wave-
forms to verify the waveform optimization efficiency at each KF iteration step. Better
estimation of the TSC can provide more information during radar waveform design
so that target detection and target recognition can be better improved.

To compare theKF estimation performance under different constraints, Fig. 7 shows
the simulation results for the waveform that was optimized using the method proposed
in this paper under different constraints. The constraints are given as follows.

1. The Es curve shows the KF estimation performance with the optimized waveform
under two constraints as

Tr {W} = Es (52)
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in (38), and
‖s0‖22 = Es (53)

in (43).
2. The Es + PAPR curve shows the KF estimation performance with the optimized

waveform under the following constraints as

Tr {W} = Es (54)

diag {W} ≤ ζ ′Es

in (38), and

‖s0‖22 = Es (55)

− √
ζ ′Es ≤ s0 ≤ √

ζ ′Es

in (43).
3. The Es + PD curve shows the KF estimation performance with the optimized

waveform under the following constraints as

Tr {W} = Es (56)

Tr
{
ĜH

k R−1
N ĜkFWFH

}
≥ ε′
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in (38), and

‖s0‖22 = Es (57)

sH0 Re {umax} ≥
√

ε′
θmax

in (43).
4. The Es + PAPR+PD curve shows the KF estimation performance with the opti-

mized waveform under the following constraints as

Tr {W} = Es (58)

Tr
{
ĜH

k R−1
N ĜkFWFH

}
≥ ε′

diag {W} ≤ ζ ′Es

in (38), and

‖s0‖22 = Es (59)

− √
ζ ′Es ≤ s0 ≤ √

ζ ′Es

sH0 Re {umax} ≥
√

ε′
θmax

in (43).

It can be seen from these simulation results that while the transmitted power, PAPR
and detection constraints are used in the radar waveform design, there is no perfor-
mance degradationwith the introduction of the additional constraints forKFestimation
with the optimized waveform.

5 Conclusions

In this work, novel TSC estimation and waveform design methods have been proposed
for temporally correlated targets in CRS. By using the temporal correlation between
pulses, the KF method has been used to estimate the TSC in the frequency domain.
To minimize the MSE of the estimated TSC at each KF iteration, the radar waveform
has been optimized by establishing an optimization problem under the constraints of
transmitted power, PAPR and detection probability. Sine the original problem is non-
convex, we have converted it into a convex one by rank relaxation. The simulation
results show that the estimation performance is greatly improved by using the proposed
method, and no performance degradation is observed with the introduction of the
additional constraints for PAPRanddetection probability. Futureworkwill concentrate
on waveform optimization for multiple extended targets, where different optimized
waveforms can be obtained for different targets. A method must then be proposed to
attain the transmitted waveform by trading off the optimized waveforms.
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Appendix 1: Derivation of the Objective Function

TSC estimation based on the MAP can be written as

ĝk = argmax
gk

p (gk | yk) , (60)

where the probability distribution of the TSC gk given the echo waveform yk can be
written as

p (gk | yk) = p (gk, yk)
p (yk)

= p (yk | gk) p (gk)
p (yk)

. (61)

The probability distribution of the echo waveform yk given the TSC gk is

p (yk | gk) = 1

(2π)
M
2 det (RN )

1
2

e− 1
2 (yk−Zkgk)HR−1

N (yk−Zkgk). (62)

The probability distribution of the TSC gk is

p (gk) = 1

(2π)
M
2 det (RT )

1
2

e− 1
2 g

H
k R−1

T gk , (63)

and the probability distribution of the echo waveform yk is

p (yk) = 1

(2π)
M
2 det (Rk)

1
2

e− 1
2 y

H
k R−1

k yk . (64)

Then, we substitute (62), (63) and (64) into (61) and derive

p (gk | yk) = p (yk | gk) p (gk)
p (yk)

(65)

= e− 1
2 (yk−Zkgk)HR−1

N (yk−Zkgk)e− 1
2 g

H
k R−1

T gk

(2π)
M
2

√
det(RT ) det(RN )

det(Rk )
e− 1

2 y
H
k R−1

k yk

= e− 1
2 f (gk )

(2π)
M
2

√
det(RT ) det(RN )

det(Rk )

,

where

f (gk) � (yk − Zkgk)H R−1
N (yk − Zkgk) + gHk R−1

T gk − yHk R−1
k yk (66)
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= yHk R−1
N yk − gHk ZH

k R−1
N yk − yHk R−1

N Zkgk + gHk ZH
k R−1

N Zkgk

+ gHk R−1
T gk − yHk R−1

k yk .

Therefore, the TSC gk that can maximize the posteriori probability p (gk | yk) can also
minimize f (gk). (60) can then be simplified as

ĝk = argmax
gk

p (gk | yk) (67)

= argmin
gk

f (gk)

= argmin
gk

yHk R−1
N yk − gHk ZH

k R−1
N yk − yHk R−1

N Zkgk

+ gHk ZH
k R−1

N Zkgk + gHk R−1
T gk − yHk R−1

k yk

= argmin
gk

gHk
(
ZH
k R−1

N Zk + R−1
T

)
gk − yHk R−1

N Zkgk − gHk ZH
k R−1

N yk,

which is (7).

Appendix 2: Simplification of the Optimization Problem

First, we present the derivation of (38). In (31), the objective function is

z∗
k = argmin

zk
Tr

{(
P−1
k|k + Vk ◦ R−1

N

)−1
}(

where Vk �
(
zkzHk

)T)
(68)

= argmin
zk

Tr

{(
P−1
k|k +

(
zkzHk

)T ◦ R−1
N

)−1
}

.

Then, by using the Fourier transform zk = Fsk , this objective function can be rewritten
in time domain as:

s∗k = argmin
sk

Tr

{(
P−1
k|k +

(
FsksHk FH

)T ◦ R−1
N

)−1
}

. (69)

In (38), we define Wk � sksHk . Then the objective function to attain the optimal
waveform matrixWk is

W∗
k = argmin

Wk
Tr

{[
P−1
k|k−1 +

(
FWkFH

)T ◦ R−1
N

]−1
}

. (70)

The constraints in (38) can be represented by the waveformmatrixWk . The first power
constraint is equivalent to

Tr {Wk} = sHk sk = Es . (71)

The second target detection constraint is

p (zk) = zHk ĜH
k R−1

N Ĝkz′
k (72)



Circuits Syst Signal Process (2016) 35:163–184 183

= Tr
{
zHk ĜH

k R−1
N Ĝkzk

}

= Tr
{
ĜH

k R−1
N ĜkFWkFH

}
≥ ε′.

And the third PAPR constraint can be written as

diag {Wk} ≤ ζ ′Es . (73)

Therefore, by combining the objective function (70) with the three constraints (71),
(72) and (73), we derive the optimization problem and obtain the optimized waveform
matrixW∗

k as

W∗
k = argmin

Wk
Tr

{[
P−1
k|k−1 +

(
FWkFH

)T ◦ R−1
N

]−1
}

s.t. Tr {Wk} = Es (74)

Tr
{
ĜH

k R−1
N ĜkFWkFH

}
≥ ε′

diag {Wk} ≤ ζ ′Es,

which is (38).
Second, if we only consider the transmitted power constraint, (74) reduces to

W∗
k = argmin

W
Tr

{[
P−1
k|k−1 +

(
FWFH

)T ◦ R−1
N

]−1
}

s.t. Tr {W} = Es, (75)

which is (44). If we add the target detection constraint, we can obtain the optimization
problem in (50).
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