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The joint sparsity of uplink channels in massive multi-input–
multi-output (MIMO) systems is explored and a block sparse model
is proposed for joint channel estimation. The block coherence of this
model is analysed. It is indicated that as the number of antennas at
the base station grows to be infinity, the block coherence will be
zero. Then a block optimised orthogonal matching pursuit (BOOMP)
algorithm is proposed. Simulation results verify the analysis and
show that the joint estimation using the BOOMP algorithm can signifi-
cantly improve the channel estimation performance.
Introduction: The use of massive multiple-input-multiple-output
(MIMO) systems where the base station (BS) is equipped with tens or
even hundreds of antennas have attracted much interest [1]. It is
shown that as the number of antennas at the BS grows to a unprece-
dented number, the additive noise and Rayleigh fading effect will be
negligible, and what dominates is the inter-cell interference caused by
pilot contamination. To reduce the pilot overhead, one potential
choice is to explore the inherent sparsity of wireless channels and to
use sparse channel estimation [2–3]. In [2], a superimposed pilot
design for downlink frequency-division duplex (FDD) massive MIMO
systems is proposed based on structured compressed sensing (CS). In
[3], sparse channel estimation with structured CS is proposed for multi-
input–single-output systems. However, no work has been reported on
uplink channel estimation in a time-division duplex (TDD) massive
MIMO system and explored joint channel sparsity. As another option
for a long-term evolution advanced standard, TDD is different to
FDD in that the downlink channel state information is obtained by
uplink channel estimation via channel reciprocity. In TDD systems,
the burden of channel estimation is delivered from the user terminal
to the BS, where the battery power of the user terminal to perform
channel estimation can be saved.

In this Letter, we explore the joint sparsity of uplink channels from
the user terminal to the BS. We propose a block sparse model for
uplink channels sharing common support. Then the block coherence
is analysed. As the number of antennas grows to be infinity, the block
coherence will be zero. We then propose a block optimised orthogonal
matching pursuit (BOOMP) algorithm for joint sparse channel esti-
mation. The notations used in this Letter are defined as follows. (·)T,
(·)H, IM, ‖·‖2, CN , /, ∪ and Ø denote the matrix transpose, conjugate
transpose (Hermitian), the identity matrix of size M, ℓ2-norm, the
complex Gaussian distribution, the set exclusion, the set union and
the empty set, respectively.

Problem formulation: We consider a massive MIMO system including
a BS equipped with M antennas and several user terminals each
equipped with one antenna. We use orthogonal frequency-division mul-
tiplexing (OFDM) for uplink transmission. Suppose the total number
of OFDM subcarriers is N. The user terminal employs K(0 <K≤N )
subcarriers with the corresponding indices p = [P1, P2, . . . , PK ](1 ≤
P1 , P2 , · · · , PK ≤ N ) to transmit pilot symbols for pilot-assisted
channel estimation. The transmit pilot vectors are denoted as x = [x
(P1), x(P2), …, x(PK)]

T. Then the BS will receive M different pilot
vectors, denoted as y (i) = [y(i)(P1), y

(i)(P2), …, y(i)(PK)]
T, i = 1, 2, …,

M, each experiencing different multipath fading. We denote the
channel impulse response (CIR) of each multipath channel as h (i) =
[h(i)(1), h(i)(2), …, h(i)(L)]T, i = 1, 2, …, M. We have

y(i) = DFh(i) + h(i), i = 1, 2, . . . , M (1)

where D W diag{x} denotes a diagonal matrix with the kth diagonal
entries being x(Pk), k = 1, 2, …, K, F is a K by L submatrix indexed
by p = [P1, P2,…, PK] in row and [1, 2,…, L] in column from a standard
N by N discrete Fourier transform matrix and h(i) � CN (0, s2IK ) is an
additive white Gaussian noise term of the ith uplink channel. We define
the measurement matrix A W DF, then (1) is rewritten as

y(i) = Ah(i) + h(i), i = 1, 2, . . . , M (2)

It has often been pointed out in the literature that the wireless channel is
essentially sparse, where the number of non-zero taps of the channel,
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denoted as S, is much smaller than the channel length L(0 , S ≪ L).
Then the CS techniques can be applied for sparse channel estimation.
Furthermore, it is shown in [4] that the CIR of different uplink channels
shares a common support because the time of arrival at different anten-
nas is similar while the paths amplitudes and phases are distinct. In other
words, the non-zero positions of h (i) are the same for i = 1, 2, …, M,
whereas their non-zero coefficients are different. We can jointly consider
the M equations in (2) and explore their joint sparsity. We define a stack
vector of received pilots as z W zT1 , z

T
2 , . . . , zTK

[ ]T
where

zl W y(1)(l), y(2)(l), . . . , y(M )(l)
[ ]T

denotes the lth block of z, l = 1, 2,
…, K. In the same way, we define a stack vector of noise terms as
n W nT1 , n

T
2 , . . . , nTK

[ ]T
where nl W h(1)(l), h(2)(l), . . . , h(M )(l)

[ ]T
denotes the lth block of n, l = 1, 2, …, K. We denote the entry at the
ith-row jth-column of A as A(i, j). We generate a new measurement
matrix B by substituting A(i, j) with an M by M diagonal matrix A(i,
j)IM. Therefore, B is composed of totally KL blocks of diagonal
matrix B(i, j) W A(i, j)IM , i = 1, 2, . . . , K, j = 1, 2, . . . , L,
where B(i, j) denotes the (i, j)th block of B. Then the M equations in
(2) can be combined together in one equation for the massive MIMO
system as

z = Bw+ n (3)

where w is defined as a stack vector w W wT
1 , w

T
2 , . . . , wT

K

[ ]T
with

wl W h(1)(l), h(2)(l), . . . , h(M )(l)
[ ]T

denoting the lth block of w, l = 1,
2, …, L. Since the non-zero positions of h (i) are the same for i = 1, 2,
…, M, the entries of wi will be either all zero or all non-zero, exhibiting
the ‘block sparsity’. Correspondingly, we represent B as a concatenation
of column-blocks Bl, l = 1, 2, …, L, as

B W b1, b2, . . . , bM︸��������︷︷��������︸
B1

, bM+1, bM+2, . . . , b2M︸�������������︷︷�������������︸
B2

, . . . ,

⎡
⎣

bLM−M+1, bLM−M+2, . . . , bLM︸������������������︷︷������������������︸
BL

⎤
⎦

(4)

where bj denotes the jth column of B, j = 1, 2,…, LM. It is observed that
the columns within each block Bl are orthogonal to each other, meaning
that the rank of each block is M.

Analysis of block coherence: Assume that each column of B is normal-
ised. This assumption is reasonable because we can normalise B by
simply decomposing it into a normalised matrix Q and a diagonal
matrix G so that B =QG. After the sparse recovery, we can obtain the
solution to the original problem by multiplying the results with G−1.

We define the ‘coherence’ of A in a manner consistent with the litera-
ture as

m(A) = max
l=k

|aHl ak | (5)

where al denotes the lth column of A, l = 1, 2, …, L. To improve the
sparse channel estimation performance for each uplink channel, it is
better to minimise μ(A) [5]. Similarly, we define the ‘coherence’ of B as

m(B) = max
l=k

|bHl bk | (6)

where the definition of bl is given in (4). Obviously, we have μ(B) =
μ(A). We further define the ‘block coherence’ of B according to [6] as

mB(B) =
1

M
max
l=k

r(BH
l Bk ) (7)

where we denote the spectrum norm of a given matrix R as
r(R) W l1/2max(R

HR), with λmax(R
HR) representing the largest eigenvalue

of the positive-semi-definite matrix RHR. It can be derived that

mB(B) =
1

M
max
l=k

r(aHk alIM ) =
1

M
max
l=k

l1/2max(|aHk al |2IM )

= 1

M
max
l=k

|aHk al| =
1

M
m(A)

(8)

If M grows to be infinity, μB(B) will be zero, which means that the
blocks Bl, l = 1, 2, …, L in (4) will be orthogonal to each other,
leading to the unique recovery of blocks. Therefore, as the number of
antennas at the BS in massive MIMO systems grows to be large, the
probability to jointly recover the positions of non-zero channel taps
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will be very high. In this way, we can reduce the pilot overhead and
therefore relieve the pilot contamination in massive MIMO systems.

Block optimised orthogonal matching pursuit: Now we propose a
BOOMP algorithm for the proposed model in (3). Note that the
BOOMP algorithm presented in this Letter is based on the optimised
OMP algorithm [7] instead of the basic OMP algorithm.

Algorithm 1: Block optimised orthogonal matching pursuit

1: Input: B, z, M, L, σ.
2: Initialisations: r⇐ z. T⇐ 0. Λ⇐Ø
3: while ‖r‖2. Ms and T≤ L
4: T⇐ T + 1.
5: Obtain J via (9).
6: Λ⇐Λ ∪ {J}.
7: r ⇐ z− BL(B

H
LBL)

−1BH
Lz.

8: end
9: Output: ĥ

(i)
L ⇐ (AH

LAL)
−1AH

Ly
(i), i = 1, 2, . . . , M .
First, we initialise a residue vector r⇐ z and a loop counter T⇐ 0. At
each iteration, we obtain an index of the non-zero entry of h (i) by

J = arg max
j[{1, 2, ..., L}\L

‖ (BH
j Bj)

−1BH
j r‖2 (9)

and keep J in an active set Λ. Since h (i) shares a common support for
i = 1, 2, …, M, we need only one active set to keep the common
support. We denote the submatrix indexed by Λ in blocks from B and
the submatrix indexed by Λ in columns from A as BΛ and AΛ, respect-
ively. We iteratively update the residue r by the least squares (LS)
estimation in step 7 of algorithm 1, where (BH

LBL)
−1BH

L is the pseudo
inverse of BΛ. Once the power of the residue is comparable to the
noise or the number of iterations is greater than L, we stop the iterations.
Meanwhile, we output the estimated CIR as ĥ

(i)
, with the coefficients of

non-zero taps denoted as ĥ
(i)
L , i = 1, 2, . . . , M .
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Fig. 1 Comparisons of individual sparse channel estimation and joint sparse
channel estimation in terms of MSE
Simulation results: We consider a massive MIMO system using N =
256 OFDM subcarriers for uplink transmission, where K = 16 subcar-
riers are used to transmit pilot symbols. The indices of pilot subcarriers
after pilot optimisation is p = [8, 40, 48, 52, 72, 82, 99, 142, 145, 154,
158, 161, 183, 209, 212, 230], achieving a very small coherence μ(A) =
4.7021 [5]. Suppose the channel length is L = 60. Now we compare the
individual sparse recovery using the OMP and the joint sparse recovery
using the BOOMP, where we set S = 12 and M = 8. Since K≤ 2S, the
individual sparse recovery for each link cannot succeed, from an infor-
mation theoretical point of view. As shown in Table 1, individually esti-
mated positions of non-zero entries of h (i) for each BS antenna are all
incorrect. Then we use 2 of 8, 4 of 8, 6 of 8 and all 8 BS antennas,
respectively, for joint sparse recovery. It is seen that we can obtain
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the true positions exactly as those of the original CIR if we use all 8
antennas for joint sparse recovery, whereas the results using 6 of 8
antennas are very close to the original CIR. Therefore, the estimation
performance will increase if we use more antennas for joint sparse
recovery. In Fig. 1 we compare the individual sparse channel estimation
and joint sparse channel estimation in terms of mean square errors
(MSEs). It is seen that the joint estimation using algorithm 1 performs
much better than the individual estimation using the OMP; and the
latter exhibits the floor effect at the high SNR region while the former
does not. Moreover, we can further improve the MSE performance by
employing more BS antennas for joint sparse channel estimation,
which shows that our scheme is typically beneficial for massive
MIMO systems.

Table 1: Comparisons of individual sparse recovery and joint
sparse recovery for M = 8
ovember 2
Positions of non-zero entries
Original
 2, 13, 21, 24, 29, 33, 41, 42, 43, 53, 54, 60
1st antenna
 2, 3, 13, 21, 29, 33, 42, 53, 54
2nd antenna
 2, 9, 20, 21, 29, 30, 39, 42, 49, 55, 56, 60
3rd antenna
 2, 6, 7, 21, 24, 29, 33, 37, 43, 46, 53, 54, 59
4th antenna
 2, 12, 13, 15, 21, 23, 25, 29, 34, 44, 45, 53
5th antenna
 2, 5, 7, 8, 13, 21, 41, 43, 49, 53, 54, 56, 59
6th antenna
 3, 6, 14, 19, 21, 25, 40, 41, 43, 47, 53, 54, 55
7th antenna
 1, 2, 14, 15, 17, 24, 30, 31, 37, 44, 50, 59
8th antenna
 1, 2, 6, 13, 21, 24, 32, 33, 42, 47, 50, 53, 54, 55
Joint 2 antennas
 1, 3, 13, 21, 22, 24, 36, 39, 43, 45, 54, 55, 58, 60
Joint 4 antennas
 2, 21, 24, 29, 33, 41, 42, 43, 53, 54, 60
Joint 6 antennas
 2, 13, 21, 24, 33, 41, 42, 43, 49, 53, 54, 60
Joint 8 antennas
 2, 13, 21, 24, 29, 33, 41, 42, 43, 53, 54, 60
Conclusion: We have proposed a block sparse model for uplink chan-
nels in massive MIMO systems. We have also proposed a BOOMP
algorithm for joint sparse channel estimation. Simulation results have
shown that the joint estimation using the BOOMP can significantly
improve the channel estimation performance.
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