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ABSTRACT

In this paper, concerning underwater acoustic (UWA) communications, we propose a wavelet filter bank system as the
extension of orthogonal frequency-division multiplexing system. We exploit the convolutional structure of a UWA chan-
nel and formulate the pilot-assisted channel estimation as a sparse recovery problem. Then, we investigate the restricted
isometry property of the measurement matrix via eigenvalue analysis and Gershgorin circle theorem. The sparse recovery
problem is proven to satisfy the restricted isometry property. Moreover, we also propose a low-complexity complex-field
homotopy algorithm for sparse channel estimation, regarding the fact that the channel taps of each path are usually com-
plex valued in practice. Simulation results show that the wavelet filter bank system achieves more accurate UWA channel
estimation performance than orthogonal frequency-division multiplexing system under the same conditions of bandwidth,
duration, data rate and channel profile. The proposed complex homotopy algorithm outperforms orthogonal matching
pursuit (OMP) and stagewise OMP in both systems, whereas its computational complexity is similar to OMP. Copyright
© 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Underwater acoustic (UWA) communications are of
increasing interest in the study of high-rate and reliable
digital communications for submarines and various under-
water vehicles as well as a wide variety of applications,
that is, deep-sea fishing, oil exploration, wildlife tracking
and environmental monitoring. However, three main chal-
lenges exist in the development of UWA communications.
The first one is the scarce frequency resource. UWA sig-
nals experience considerable attenuation at high frequency
range because the water absorption grows rapidly with the
distance and the carrier frequency. Meanwhile, regarding
the severe UWA channel noise at low frequency, the band
for UWA communications is only available at medium fre-
quency and therefore is very limited. For example, to com-
municate at the distance of 100 k, only 1-kHz bandwidth is
available [1]. The second challenge is the Doppler effect.
Because the bandwidth is comparable with the carrier fre-
quency in UWA communications, it is a typical wide-
band system where the Doppler shift cannot be regarded
as the same for the whole band. Moreover, considering
the fact that the speed of sound, that is, 1500 m/s in the

seawater, is very slow compared with the speed of electro-
magnetic waves in the air, any relative motion between
the transmitter and the receiver will cause severe Doppler
distortion. The last challenge is the abundant multipath
propagation. In addition to the direct path, the acoustic
signal propagates via multiple reflections from the sur-
face, bottom and other objects, as shown in Figure 1. The
large delay spread leads to strong frequency selectivity that
may be highly time varying. The inter-symbol interference
(ISI) may spread over several hundreds of symbol periods,
which brings heavy burden to the front-end preprocessing
for combatting the channel effect at the receiver.

The earlier UWA systems use frequency shift keying
to modulate signal into discrete tones with guard time and
guard bands. Although these systems carefully avoid ISI,
making them easy for implementation, the data rates are
only around 1 kb/s. Then, coherent demodulation tech-
nique increases the data rate and spectral efficiency
by adaptive phase tracking and equalisations, which
demonstrates its significant improvement over noncoherent
methods and achieves data rate of 10 kb/s in short-
range, shallow-water UWA channels [2]. Recently, orthog-
onal frequency-division multiplexing (OFDM), which has
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multipath propagation

Figure 1. Multipath propagation of underwater acoustic
communications.

prevailed in wireless radio systems, has also been applied
to UWA communications [3, 4]. OFDM transforms the
frequency-selective channel into several parallel flat-fading
narrowband subchannels, where each subband only needs
a single-tap equaliser. Therefore, the high complexity asso-
ciated with the long decision feedback equaliser in single-
carrier systems is mitigated. More recently, the wavelet
has been applied for UWA communications because of
its inherent advantage of filtering out narrowband interfer-
ence by wavelet denoising [5, 6]. Wavelet-based Doppler
compensation can be equally converted into the diversity
combination for the optimum receiver design [7]. OFDM
requires a guard interval, such as cyclic prefix and zero
padding, to combat inter-channel interference (ICI) and
ISI caused by channel multipath. The overhead of the
guard interval is saved in wavelet systems, especially for
UWA channels whose delay spread is usually very large.
Additionally, OFDM employs rectangular or other types of
window to suppress side lopes of power spectrum, which
produces ICI and ISI that damage the orthogonality of sub-
carriers [8–10]. It is demonstrated in [11] that lower ICI
and ISI than OFDM can be achieved in wavelet systems.
In particular, a wavelet filter bank system can be regarded
as the extension of an OFDM system where the Fourier
basis is employed instead of the wavelet basis [12].

Nevertheless, one of the largest barriers blocking UWA
communications is the UWA channel distortion. Com-
pared with single-carrier systems, OFDM estimates the
channel before making the one-tap channel equalisation,
which substantially reduces the receiver’s complexity. And
with the further combination of the recently emerged com-
pressed sensing (CS) techniques [13–15], UWA channel
estimation is much more simplified. The channel impulse
response (CIR) can be reconstructed through CS algo-
rithms because the UWA channel is usually dominated by a
small number of significant paths, resulting in a sufficient
sparse CIR [1]. This topic is currently undergoing explo-
sive discussions [16, 17]. Many CS algorithms including
matching pursuit (MP), orthogonal MP (OMP) and basis
pursuit (BP) have been applied for UWA OFDM channel
estimation [18–20]. Specifically, BP is shown to outper-
form OMP [21]. In [22], three BP algorithms including
`1-LS, YALL1 and SpaRSA are compared. However, the
complexity of BP algorithms is much higher than that
of OMP. For UWA channels where the estimates have to
be frequently updated, applying BP for real-time channel

estimation is computationally very expensive. So it is
necessary to explore lower-complexity CS algorithms.

In this paper, we first construct a wavelet filter bank
system as the extension of OFDM system for UWA
communications. We exploit the convolutional structure
and formulate the pilot-assisted UWA channel estimation
as a sparse recovery problem. Then, we investigate the
restricted isometry property (RIP) of the measurement
matrix via eigenvalue analysis and Gershgorin circle the-
orem. We also propose a low-complexity complex-field
homotopy algorithm for sparse channel estimation regard-
ing the fact that in practice the channel taps of each path are
usually complex valued. Additionally, we also compare the
channel estimation performance for the wavelet filter bank
and OFDM systems in terms of mean square error (MSE)
and bit error rate (BER).

The remainder of the paper is organised as follows.
Section 2 constructs a wavelet filter bank system and for-
mulates the UWA channel estimation as a sparse recovery
problem. Section 3 investigates the RIP through eigenvalue
analysis and Gershgorin circle theorem. In Section 4, a
low-complexity complex-field homotopy algorithm is pro-
posed for sparse channel estimation. Simulation results are
presented in Section 5, and finally, Section 6 concludes this
paper.

The notation used in this paper is according to the con-
vention. Symbols for matrices (upper case) and vectors
(lower case) are in boldface. .�/T, .�/H, j � j, k � k1 k � k2,
b�c, C, R, diagf�g, IL, 0M�N , R, I and CN denote
transpose, conjugate transpose (Hermitian), absolute value,
`1-norm, `2-norm, the floor, the set of complex number,
the set of real number, the diagonal matrix, the identity
matrix with dimension L, the M by N zero matrix, the
real part, the imaginary part and the complex Gaussian dis-
tribution, respectively. O.�/ means the order. O� denotes the
estimate of the parameter of interest �.

2. PROBLEM FORMULATION

We consider the UWA channel that has a time-varying
multipath CIR as

h.�; t/D

SX
iD1

�i .t/ı.� � �i .t// (1)

where S , �i .t/ and �i .t/ are the number of total path, the
i th time-varying path attenuation and path delay, respec-
tively. We adopt two assumptions as follows:

(1) All paths have the same Doppler scaling factor ˛.t/
such that

�i .t/� �i � ˛.t/t (2)

which supposes that the dominant Doppler shift
is caused by the relative movement between the
transmitter and the receiver [3].
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(2) �i .t/, �i .t/ and ˛.t/ are constant over each data
block, which contains several data symbols or train-
ing symbols. We represent them as �i , �i and ˛,
respectively. This assumption is reasonable because
the UWA channel coherence time is usually on the
order of seconds [3], whereas the duration of each
data block is no more than hundreds of milliseconds.
In fact, this assumption is common when we deal
with time-varying channels.

Let e.t/ D Refs.t/ej2�fct g denote the transmitted signal
in passband, where fc is the carrier frequency and s.t/ is
the baseband signal. Then, the received passband signal is

z.t/D

Z 1
�1

h.�; t/e.t � �/d� C �.t/

D Re

8<
:
SX
iD1

�i .t/s .t � �i .t// e
j2�fc.t��i .t//

9=
;

C �.t/

D Re

8<
:
SX
iD1

�i .t/s ..1C ˛.t// t � �i /

�ej2�fc..1C˛.t//t��i /

9=
;C �.t/ (3)

where �.t/ is the additive Gaussian noise. During each data
block that �i .t/, �i .t/ and ˛.t/ are constant, we have

Qz.t/D Re

8<
:
SX
iD1

�i s ..1C ˛/t � �i /

�ej2�fc..1C˛/t��i /

9=
;C �.t/ (4)

where we notice that the received signal is scaled by
1=.1 C ˛/ in duration. Because the bandwidth is compa-
rable with the carrier frequency in UWA communications,
the Doppler shift ej2�fc˛t cannot be regarded as uniform
for the whole bandwidth.

We directly sample the received passband signal with-
out down-conversion because the frequency range used
for UWA communications is usually in tens of thousands
of hertz, which is more convenient for implementation in
software-defined radio. To estimate the resampling fac-
tor, we design each data block containing one preamble
and one postamble. In [23], a structure of preamble is
proposed where it consists of two identical OFDM sym-
bols and one cyclic prefix. And correspondingly, a bank of
self-correlators is employed for the receiver with each of
the self-correlators matched to a different duration. Then,
the estimated length of data block OTrx equals the branch
that has the maximum correlation with the received sig-
nal. Because the length of transmitted data block Ttx
is explicitly known beforehand, the estimated Doppler
scaling factor is

Ǫ D
Ttx

OTrx
� 1 (5)

However, the shortcoming of this approach is that the esti-
mation accuracy relies on the number of self-correlators.
Therefore, in this paper, we design the preamble and
the postamble to be linear-frequency-modulated signals.
By cross-correlating the received signal with the known
preamble and postamble, the receiver estimates the length
of each data block and figures out Ǫ , which is more flexible
than using a bank of self-correlators.

We resample the received signal Qz in Equation (4) as

r.t/D Qr

�
t

1C Ǫ

�

D Re

8<
:
SX
iD1

�i s

�
1C ˛

1C Ǫ
t � �i

�

�e
j2�fc

�
1C˛
1C Ǫ

t��i

�9=
;C Q�.t/ (6)

where Q�.t/ is the resampling result of �.t/. Then, the
equivalent received baseband signal is

Qr.t/D

SX
iD1

�i s

�
1C ˛

1C Ǫ
t � �i

�
e
j2�fc

�
˛� Ǫ
1C Ǫ

t��i

�
C �B.t/

(7)
where �B.t/ is the equivalent baseband noise. Although we
intend to make .1C˛/ as close to .1C Ǫ / as possible, there
is a residual carrier frequency offset [24] defined as

fo D

�
˛ � Ǫ

1C Ǫ

�
fc (8)

which can be viewed as uniform for the whole band.
Hence, a wideband system is converted into a narrowband
system with frequency-independent carrier frequency off-
set, which can be conveniently compensated in the wavelet
filter bank systems [25].

According to filter bank theories in wavelet, the scaling
function and the wavelet function can be considered as a
low-pass filter and a high-pass filter, respectively. Figure 2
gives a block diagram of a wavelet filter bank system. The
serial data stream x.n/ is first converted into M parallel
multirate data streams, x0.n/, x1.n/, . . . , xM�1.n/, where

xi .n/D

�
x.2iC1 � n� 2i /; i D 0; 1; : : : ;M � 2

x.2M�1 � n� 2M�1/; i DM � 1
(9)

Then, they pass through a bank of reconstruction wavelet
filters with each filter comprising an upsampling opera-
tion " ni .i D 0; 1; : : : ;M � 1/ and a filtering opera-
tion fi .n/ .i D 0; 1; : : : ;M � 1/. The output of every
branch is combined together, denoted as s.n/. Then, s.n/
is sent into the UWA channel. At the receiver, r.n/ is first
inputted into a bank of decomposition wavelet filters with
each filter comprising a digital filtering operation gi .n/
.i D 0; 1; : : : ;M � 1/ and a downsampling operation # ni
.i D 0; 1; : : : ;M � 1/. After that, the parallel data streams
are converted into a serial data stream y.n/.

766 Trans. Emerging Tel. Tech. 23:764–776 (2012) © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/ett



C. Qi and L. Wu

1( )Mf n
1( )Mx n

2 ( )Mf n
2 ( )Mx n

0 ( )f n
0 ( )x n

.

.

.

Channel

.

.

.

( )s n ( )r nSerial
to

Parallel
and

multirate
conversion

1Mn

.

.

.

2Mn

0n

1( )Mg n 1( )My n

2 ( )Mg n
2 ( )My n

0 ( )g n
0 ( )y n

.

.

.

.

.

.

Parallel
to

Serial
and

multirate
conversion

1Mn

.

.

.

2Mn

0n

( )x n ( )y n

Figure 2. Wavelet filter bank system.

For a Haar wavelet, the scaling and wavelet functions
can be written as

p.n/D
1
p
2
ı.n/C

1
p
2
ı.n� 1/ (10)

and

q.n/D
1
p
2
ı.n/�

1
p
2
ı.n� 1/ (11)

respectively. After cascade filter conversion and Z-
transform, we have

ni D

�
2iC1; i D 0; 1; : : : ;M � 2

2M�1; i DM � 1
(12)

and

fi .z/D

8̂<
:̂
QM�1
kD0 p.z

2k /; i DM � 1

q.z2
i
/
Qi�1
kD0 p.z

2k /; i D 1; : : : ;M � 2

q.z/; i D 0
(13)

where fi .z/ is the Z-transform of fi .n/, denoted as

fi .z/D

C1X
nD�1

fi .n/z
�n (14)

Therefore,

s.n/D

M�1X
iD0

1X
kD0

xi .k/fi .n� 2
iC1k/

D

1X
kD0

h
x.2M�1 � k � 2M�1/

C

M�2X
iD0

x.2iC1 � k � 2i /
i
fi .n� 2

iC1k/

(15)

Now, we can formulate the received signal r.n/ as the
discrete-time convolution from s.n/ and h.n/, which is
denoted as

r.n/D s.n/ � h.n/C �.n/ (16)

where �.n/ is the sample of additive white Gaussian noise.
Let L denote the length of h.n/ and suppose the training
sequence to be fs.n/; n D 0; 1; : : : ; NT � 1g .NT > L/.
The resulting input–output relation of Equation (16) can
be represented as a matrix–vector product

QrD QAhC Q� (17)

where QrD Œr.0/; r.1/; � � � ; r.NT � 1/�
T, hD Œh.0/;

h.1/; � � � ; h.L � 1/�T, Q� D Œ�.0/; �.1/; � � � ; �.NT �

1/�T�CN .0; �2� INT/ is a noise vector with each com-
ponent to be an additive white Gaussian noise sample
and

QAD

2
6664

s.0/ s.�1/ � � � s.�LC 1/

s.1/ s.0/ � � � s.�LC 2/
:::

:::
: : :

:::

s.NT � 1/ s.NT � 2/ � � � s.NT �L/

3
7775
(18)

contains the known training sequences fs.n/; n D

0; 1; : : : ; NT�1g as well as unknown sequences fs.n/; nD
�LC1;�LC2; : : : ;�1g that are located in the upper-right
triangular area of QA. The unknown sequences can be some
data symbols or null symbols that are unpredicted at the
receiver. Therefore, we cannot directly use QA for channel
estimation. Instead, we have to use a submatrix

AD

2
6664

s.L� 1/ s.L� 2/ � � � s.0/

s.L/ s.L� 1/ � � � s.1/
:::

:::
: : :

:::

s.NT � 1/ s.NT � 2/ � � � s.NT �L/

3
7775
(19)

of QA for channel estimation. We observe that all compo-
nents of A are known training symbols from fs.n/; n D
0; 1; : : : ; NT � 1g. The dimension of QA and A are NT by L
and .NT �LC 1/ by L, respectively. Then, Equation (17)
is reformulated as

rD AhC � (20)

where r D Œr.L � 1/; r.L/; : : : ; r.NT � 1/�T, � D
Œ�.L� 1/; �.L/; : : : ; �.NT � 1/�

T. If NT > 2L� 1, Equa-
tion (20) is an over-determined problem and least squares
(LS) can be applied. However, we are more interested in
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the under-determined case where L 6 NT < 2L � 1 and
the rows of A are less than its columns. In this case, only
a small number of training sequence are required, which
indicates the improvement in the data rate and spectrum
efficiency. In combination with the recently emerged CS
techniques, Equation (20) is undergoing extensive discus-
sions on the sparse recovery performance of h from the
measurement r and the measurement matrix A. So in the
following section, we investigate the RIP of A.

Additionally, we also observed from Equation (20) that
if NT < L, each row of Equation (17) contains unknown
data symbols as well as known training symbols. The chan-
nel can only be estimated with the assistance of perfect
symbol demodulation in an iterative manner, which is out
of the scale of this work.

3. RESTRICTED ISOMETRY
PROPERTY

Recent advances in CS show that h in Equation (20) can
be recovered from r with high accuracy when A satisfies
RIP [26].

Definition. A 2Rm�n satisfies RIP if

.1� ı/khk22 6 kAhk22 6 .1C ı/khk22 (21)

holds for all S -sparse vectors h 2Rn (khk0 6 S ).
It can be easily obtained from Equation (21) that

.1� ı/khk22 6 �minkhk
2
2

6 kAhk22 6 �maxkhk22 6 .1C ı/khk22
(22)

where �min and �max denote the minimum and maxi-

mum eigenvalues of ATA, respectively. Then, this sufficient
condition for RIP is simplified as

1� ı 6 �min 6 �max 6 1C ı (23)

For example, if ı D 0:01, then we have 0:99 6 �min 6
�max 6 1:01, which implies that all the eigenvalues are
distributed in a small circular area near the surface of a
unit sphere.

Here, we start with the discussion on the RIP condition
of A in Equation (20) before applying CS algorithms for
the wavelet filter bank system. The Toeplitz CS matrices
have been studied in [27]. However, here, we treat it in
a simplified approach. First, we normalise A so that each
column of A is normalised to 1. We have

AD XD (24)

where

DD diagf	1; 	2; : : : ; 	Lg (25)

is a diagonal matrix with each diagonal component as a
normalised coefficient and

XD

2
666664

s.L�1/
�1

s.L�2/
�2

� � � s.0/
�L

s.L/
�1

s.L�1/
�2

� � � s.1/
�L

:::
:::

: : :
:::

s.NT�1/
�1

s.NT�2/
�2

� � � s.NT�L/
�L

3
777775 (26)

is an `2-normalised matrix. X 2 RN�L where N D

NT � L C 1. In this way, we guarantee that every diag-
onal component of V D XTX is 1. Let Vi ;j represent the
component in the i th row, j th column of V. We have

˚
Vi ;i D 1 j i 2 f1; 2; ; : : : ; Lg

�
(27)

Supposing

QhD Dh (28)

we reformulate Equation (20) as

rD X QhC � (29)

After Qh is reconstructed, we can obtain h by

hD D�1 Qh (30)

It is observed that each off-diagonal component of V is the
inner product of two different columns of X, that is,

V1;2 D .s.L� 2/s.L� 1/C s.L� 1/s.L/

C s.L/s.LC 1/C s.LC 1/s.LC 2/

C � � � C s.NT � 3/s.NT � 2/

Cs.NT � 2/s.NT � 1// =	1	2 (31)

It is possible to split the summation into two groups as

V1;2 D .s.L� 2/s.L� 1/C s.L/s.LC 1/C � � �

Cs.NT � 3/s.NT � 2// =	1	2

C .s.L� 1/s.L/C s.LC 1/s.LC 2/

C � � � C s.NT � 2/s.NT � 1// =	1	2 (32)

so that the items of the summation within each group are
independent. We denote

V.1/1;2 D s.L� 2/s.L� 1/C s.L/s.LC 1/C � � �

C s.NT � 3/s.NT � 2/ (33)

and

V.2/1;2 D s.L� 1/s.L/C s.LC 1/s.LC 2/C � � �

C s.NT � 2/s.NT � 1/ (34)

768 Trans. Emerging Tel. Tech. 23:764–776 (2012) © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/ett



C. Qi and L. Wu

Then,

V1;2 D
�

V.1/1;2CV.2/1;2

�
=	1	2 (35)

Considering traditional modulation schemes such as phase
shift keying and quadrature amplitude modulation, the con-
stellation points are symmetrically distributed, and thus,
the mean of these items is 0. Also notice that the ampli-
tude of these points is finite because they usually lie within
a circular or rectangular area. Then, we have

E fs.n/g D 0 (36)

and

js.n/j6 	; nD 0; 1; : : : ; NT (37)

According to Hoeffding’s inequality, which states

Pr

0
@
ˇ̌̌
ˇ̌̌ kX
iD1

!i �E

8<
:

kX
iD1

!i

9=
;
ˇ̌̌
ˇ̌̌> t

1
A

6 2 exp

 
�

2t2Pk
iD1.bi � ai /

2

!
(38)

where

f !i j !i 2 Œai ; bi �; i 2 f1; 2; : : : ; kg g (39)

are independent bounded random variables, we obtain

Pr
�

V.1/1;2 > t
�
6 2 exp

 
�

t2

.NT �LC 1/	4

!
(40)

and

Pr
�

V.2/1;2 > t
�
6 2 exp

 
�

t2

.NT �LC 1/	4

!
(41)

Therefore,

Pr

� ˇ̌
V1;2

ˇ̌
> ı

L� 1

�

6 Pr

�ˇ̌̌
V.1/1;2

ˇ̌̌
> ı	1	2

2.L� 1/
or

ˇ̌̌
V.2/1;2

ˇ̌̌
> ı	1	2

2.L� 1/

�

6 2max

�
Pr

�
V.1/1;2 >

ı	1	2

2.L� 1/

�
;

Pr

�
V.2/1;2 >

ı	1	2

2.L� 1/

� �

6 4 exp

 
�

ı2	21	
2
2

4.NT �LC 1/.L� 1/2	4

!
(42)

These steps can be conveniently extended to other off-
diagonal elements of V. According to the Gershgorin circle

theorem, the eigenvalues of V all lie inL discs. The i th disc
is centred at Vi ;i with the radius as

ri ;i D

LX
jD1;j¤i

jVi ;j j (43)

It can be obtained from Equation (42) that

Pr
	
ri ;i > ı



6
"
4 exp

 
�

ı2	21	
2
2

4.NT �LC 1/.L� 1/2	4

!#L�1
(44)

which is the probability of the event that the eigenvalues of
V lie outside Œ1� ı; 1C ı�. From Equation (23), we prove
that X satisfies RIP with the probability greater than

1�

"
4 exp

 
�

ı2	21	
2
2

4.NT �LC 1/.L� 1/2	4

!#L�1
(45)

4. COMPLEX HOMOTOPY

An S -sparse vector h in Equation (20) can be recovered
from r and A by solving the `0-norm minimisation problem

min
h
khk0 s.t. kr�Ahk2 6 �� (46)

where khk0 counts the number of nonzero elements of
h. This is a nondeterministic polynomial-time hard com-
binatorial problem. However, it can be replaced by the
following `1-norm optimisation problem [28]:

min
h
khk1 s.t. kr�Ahk2 6 �� (47)

Currently, methods for solving Equation (47) can be
roughly divided into two classes, including convex opti-
misation algorithms and greedy algorithms. The convex
optimisation algorithms include `1-LS, YALL1, SpaRSA
[29] and other optimisation solvers. However, these meth-
ods usually have high computational complexities. Greedy
algorithms make a sequential locally optimal choice in an
effort to determine a globally optimal solution and include
MP, OMP [30], CoSaMP, subspace pursuit [31], gradi-
ent projection for sparse reconstruction [32] and homo-
topy [33]. Because frequent channel estimation is required
in UWA communications, low-complexity greedy algo-
rithms are much more preferred. Among the many greedy
algorithms, CoSaMP and subspace pursuit require explicit
knowledge of the sparsity, which means that we have to
a priori know the number of the nonzero components
of the CIR vector. However, this a priori knowledge
is unavailable because the number of the multipath is
usually unknown. MP and OMP have been extensively
studied with their variants such as optimised OMP,
backward-optimised OMP and stagewise OMP (StOMP)
[34]. Although these variants may outperform OMP, their
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complexities are much higher than OMP. In practice, OMP
is still a reasonable trade-off between the performance and
the complexity, especially for UWA channel estimation
[17,21,22]. In [33] and [30], it has been shown that homo-
topy has the same order of complexity as OMP whereas
its sparse recovery performance is as good as that obtained
from convex optimisation.

Real-valued homotopy is proposed in [33] as a least
angle regression [35] algorithm with the least abso-
lute shrinkage and selection operator modifications. After
greedy selection of the first column according to the
maximum-inner-product rule and its addition to the current
column selection as MP and OMP, homotopy steps forward
until one column outside the selection appears to have the
same inner product with the current residue as the columns
inside the selection. Then, the column is selected, and a
new step along an equiangular direction having the same
inner product with all vectors in the selection is updated.
The iteration is repeated until the stopping condition is sat-
isfied. Unlike MP and OMP removing all the projective
components at each iteration, homotopy only removes the
part of it whose value actually equals the step length at each
iteration. Once it eliminates the superiority of the maximal-
inner-product column over other columns, homotopy fairly
treats all the columns. Because the UWA channel is essen-
tially sparse with complex-valued channel taps, we extend
homotopy from the real field to the complex field before
applying for UWA channel estimation.

Note that unlike MP and OMP, for which the exten-
sion to the complex field is straightforward, performed by
simply replacing the transpose operator by the Hermitian
operator, the extension of homotopy to the complex field
is much more involved. To clarify the procedure for imple-
mentation, we summarise homotopy in Algorithm 1.

Considering an unconstrained optimisation problem

min
h
kr�Ahk22=2C �khk1 (48)

the theory for penalty functions implies that homotopy
starts at � 2R large and hD 0 and terminates when �! 0.
Meanwhile, h converges to the solution of noiseless sparse
recovery problem

min
h
khk1 s.t. rD Ah (49)

For the noisy sparse recovery problem as considered in this
paper, the stopping condition �! 0 should be revised as

kr�Ahk2 6 �� (50)

Suppose the objective function is

f�.h/D kr�Ahk22=2C �khk1 (51)

A necessary condition for h to be a minimiser of f�.h/ is
that the zero vector is an element of the subdifferential of
f�.h/, denoted as

@f�.h/D�AH.r�Ah/C �@khk1 (52)

Algorithm 1. Complex homotopy
Step 0: Initialisation
c0 D AHr, �0 Dmaxi2f1;:::;Lg jc0.i/j;
I0 D arg maxi2f1;:::;Lg jc0.i/j;
set both hl 2C

L and dl 2C
L to 0 vectors.

FOR l D 0; 1; : : : ;

Step 1: Find the direction
solve AH.Il /A.Il /dl .Il /D cl .Il /=�l and obtain dl ;
set the components of dl outside Il to 0.

Step 2: Decide the step size
define cl .I

c
l
/D AH.I c

l
/.r�Ahl /,

d�.I c
l
/D AH.I c

l
/Adl ;

FOR i 2 I c
l

solve quadratic Equation (69);
EndFOR (i )
if Is ¤¿

�
l
Dmin f�< fhl .i/g =<fdl .i/g ; i 2 Isg


l Dminf
C
l
; 
�
l
g

else

l D 


C
l

end if
set hlC1 D hl C 
ldl and �lC1 D �l � 
l ;
set clC1.Il /D .�l � 
l /hl .Il /=jhl .Il /j,
set clC1.I

c
l
/D cl .I

c
l
/� 
ld�.I

c
l
/.

Step 3: Update the selection
if 
l D 


C
l

add a new column indicated by 
C
l

into Il and
generate IlC1

else
delete the column indicated by 
�

l
from Il and

generate IlC1
end if

Step 4: Check the stopping condition
if kr�AhlC1k2 6 �� , quit the iteration;
otherwise continue . . .

EndFOR (l)

where the subdifferential @khk1 of khk1 is given by

@khk1 D(
! 2CL

ˇ̌̌
ˇ̌ !.i/D h.i/

jh.i/j ; h.i/¤ 0
!.i/D fx 2C; jxj6 1g ; h.i/D 0

)

(53)

where h.i/ and !.i/ denote the i th component of h and !,
respectively. Let

T D fi j h.i/¤ 0 g (54)
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denote the support of h and

cD AH.r�Ah/ (55)

denote the correlations between the dictionary matrix and
the residue. Then, the condition 0 2 @f�.h/ can be written
equivalently as two conditions

c.T /D � �
h.T /
jh.T /j

(56)

and

jc.T c/j6 � (57)

where T c stands for the complement of T . Homotopy
traces a solution path by maintaining these two conditions.

To clarify the notation, we use subscript l to represent
the parameters at the l th step. We initialise the parameters
to be

c0 D AHr (58)

�0 D max
i2f1;:::;Lg

jc0.i/j (59)

I0 D arg max
i2f1;:::;Lg

jc0.i/j (60)

At the l th step, an update direction dl 2 CL is first
computed by solving

AH.Il /A.Il /dl .Il /D
cl .Il /
�l

(61)

The components of dl outside Il are set to 0. Next, we fig-
ure out the step size 
l so that a new solution at the .lC1/th
step can be obtained as

hlC1 D hl C 
ldl (62)

where hl 2 CL is initialised to be a zero vector and
converges to the solution of Equation (48). We have

clC1 D AH.r�AhlC1/

D AH.r�Ahl /� 
lA
HAdl

D cl � 
lA
HAdl (63)

Because the current selected columns always follow
Equation (56), we have

clC1.Il /D .�l � 
l /
hl .Il /
jhl .Il /j

(64)

On the other hand, we want to find a new column from I c
l

for the (l C 1)th step,

clC1.I
c
l /D cl .I

c
l /� 
ld�.I

c
l / (65)

where we define

cl .I
c
l /, AH .I cl /.r�Ahl / (66)

d�.I cl /, AH .I cl /Adl (67)

Once a column inside I c
l

appears to have the same projec-
tion as the columns inside Il , which in fact occurs when
Equation (64) equals Equation (65) in amplitude as

jcl .i/� 
ld�.i/j D �l � 
l ; i 2 I
c
l (68)

we consider it to be one possible candidate for the next
selection because the residue can decline equally in this
direction. We further define

cR ,<fcl .i/g ; cI , = fcl .i/g

�R ,<fd�.i/g ; �I , = fd�.i/g

and then obtain a quadratic equation as

.�2R C�
2
I � 1/


2
l

C 2.�l � cR�R � cI�I /
l C c
2
R C c

2
I � �

2
l D 0

(69)

We figure out two roots and select the smaller one, denoted
as 
.i/, i 2 I c

l
, among which we obtain


C
l
D min
i2Ic

l

f
.i/g (70)

The other scenario leading to a breakpoint in the solu-
tion path occurs when one component of hl .Il / crosses
0, which means the real part and the imaginary part
simultaneously equal 0. If

Is D

�
<fhl .i/g
< fdl .i/g

D
= fhl .i/g
= fdl .i/g

; i 2 Il

�
¤¿ (71)

then


�l D min
i2Is

�
�
<fhl .i/g
< fdl .i/g

�
(72)

Finally, the step size is determined as


l Dminf
C
l
; 
�l g (73)

We can use Equation (62) to update the solution hlC1. If

l D 
C

l
, we add a new column indicated by 
C

l
into

Il and obtain IlC1. If 
l D 
�
l

, we delete the column
indicated by 
�

l
from Il and obtain IlC1. We also update

with

�lC1 D �l � 
l (74)
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These steps are repeated until the stopping condition (50)
is satisfied.

The preceding extension to the complex field can be eas-
ily verified by forcing cI D 0, �I D 0 in Equation (69),
which then reduces to the real-field form of homotopy [33].
Unlike OMP, where the whole projection is removed at
each step, homotopy only removes part of it, which can be
thought as a moderate greedy algorithm. Moreover, homo-
topy allows the columns to enter as well as to leave the
current selection, which makes it more powerful than OMP.

5. SIMULATION RESULTS

The OFDM parameters used in our simulation are set
according to [3], as listed in Table I.

Here, the values of Np and Nu are different with those
in [3] because we will compare the OFDM system and the
wavelet system under the same conditions of bandwidth,
duration, channel profile and data rate. The bandwidth
B D 12 kHz is centred at fc D 27 kHz and divided into
Nc D 512 OFDM subcarriers, among which Np D 70 and
Nu D 59 are used for pilot subcarriers and null subcarriers,
respectively. The useful length of each OFDM symbol is
Tu D 42:67 ms, which equals the reciprocal of the subcar-
rier spacing. The length of the zero padding guard interval
is Tg D �max D 25 ms or equivalently Ng D 300 after
sampling. Then, the length of each OFDM symbol is

Ts D TuC Tg D 67:67 ms

We consider the UWA transmission in the unit of OFDM
packet, with the same structure as in [3], which consists

Table I. Orthogonal frequency-division multiplexing
parameters.

Number of total subcarriers Nc D 512
Number of pilot subcarriers Np D 70
Number of null subcarriers Nu D 59
Length of zero padding Ng D 300
Carrier frequency fc D 27 kHz
Signal bandwidth BD 12 kHz
Doppler shift at fc 76.98 Hz

of one preamble, one postamble and 64 OFDM symbols,
as shown in Figure 3. Both the preamble and the postam-
ble are designed to be linear-frequency-modulated signals,
which are used to mitigate the Doppler effect. Therefore,
the Doppler scaling factor is regarded to be the same within
each OFDM packet. The relative speed between the trans-
mitter and the receiver is 8.3 knots, resulting in the Doppler
shift at fc to be around 76.98 Hz [3].

The multipath sparse channel model

h.�; t/D

SX
iD1

ai .t/ı.� � �i .t// (75)

which is introduced from [21], is used to generate
UWA channel data. Within the OFDM packet, a differ-
ent CIR vector is randomly generated for each OFDM
symbol, according to the approach proposed in [36].
fai g�CN .0; e�b�i IS /. b D 1=16 is the exponential power
delay profile, and �i is the delay spread for the i th path
[36]. Here, we consider a five-path channel with the maxi-
mal channel delay spread �max D 25ms. A zero CIR vector
with the length L is first generated, where S D 5 positions
are randomly selected as channel taps. Then, we produce
fai g as the attenuation for each path. We repeatedly gener-
ate a set of channel data for simulations. In practice, we
may replace the aforementioned simulated channel data
with the real UWA channel measurements, and it is ver-
ified in [21] that the simulations usually give the same
performance trend as the real UWA experiments.

To fairly compare the channel estimation performance
of OFDM and wavelet filter bank system, we set the length
of wavelet packet the same as that of OFDM packet, as
shown in Figure 3. The same preamble and postamble
are employed. The parameters of the wavelet filter bank
system are listed in Table II. The number of branches is
supposed to be M D 7, and therefore, the length of each
wavelet symbol is NT D 2M�1 D 64 or equivalently
Tws D 2NT=B D 10:66 ms. Because the number of total
channel taps is Lw D B�max=2 D 150, the training length
Twt D 35:67 ms or equivalently Nwt D 214 is enough
to make accurate channel estimation. Then, the full data

uT uT uTgT gT gT

64 2 1

OFDM packet

Wavelet packet

OFDM symbol

preamble

preamble

postamble

postamble wtTwdTwtTwdT

64

Wavelet block 

wtTwdT

2 1

Figure 3. The structure of orthogonal frequency-division multiplexing (OFDM) packet and wavelet packet.
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Table II. Parameters of wavelet filter bank system.

Number of branches in filter bank M D 7
Length of each wavelet symbol NT D 64
Length of the training symbol Nwt D 214
Length of the data symbols Nwd D 192
Carrier frequency fc D 27 kHz
Signal bandwidth BD 12 kHz
Doppler shift at fc 76.98 Hz

length Twd of each wavelet block is

Twd D Ts � Twt D 32ms

or equivalently Nwd D 192. We can figure out the number
of wavelet data symbols in each wavelet block as follows:

Nws D

�
Twd

Tws

�
D 3

The data rate for OFDM and wavelet filter bank system is

Ro D B �
Tu

Ts
�
Nc �Nu �Np

Nc

D 5:67� 103 .symbols per second/

and

Rw D B �
NwsNT

NwtCNwd

D 5:67� 103 .symbols per second/

respectively. Therefore, we compare two systems under the
same conditions of bandwidth, duration, channel profile
and data rate. The comparisons of the channel estima-
tion performance in terms of MSE that is averaged over
64 OFDM symbols or 64 wavelet blocks are illustrated in
Figure 4. It is observed that the MSE performance of the
wavelet filter bank system is better than that of OFDM,
especially for large signal-to-noise ratio (SNR), that is,
SNR > 20 dB. For the specific system, we also compare
three different CS algorithms, including OMP, StOMP,
which is an enhanced version of OMP [34], and the pro-
posed homotopy. Here, we do not include the traditional
LS method into our comparisons because LS works much
worse than the sparse recovery algorithms when the pilot
number is small [37]. In both systems, it is demonstrated
that homotopy outperforms StOMP and OMP. Moreover,
we verify our viewpoints through the bit error rate compar-
isons of two systems, as shown in Figure 5, where quadra-
ture phase shift keying modulation is employed without
channel coding.

To determine how many pilots or training sequences
are needed to recover the sparse UWA channel to some
required threshold MSE, we make a test of MSE compar-
isons with respect to different lengths of pilots or training
sequences for OFDM and wavelet systems. As shown in
Figure 6, the increase of pilots from 20 to 40 can mostly
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SNR / dB

M
S

E

Homotopy for OFDM
Homotopy for wavelet
StOMP for OFDM
StOMP for wavelet
OMP for OFDM
OMP for wavelet

100

Figure 4. Comparisons of channel estimation for orthogonal
frequency-division multiplexing (OFDM) and wavelet filter bank
systems (S D 5). MSE, mean square error; OMP, orthogonal
matching pursuit; SNR, signal-to-noise ratio; StOMP, stagewise

orthogonal matching pursuit.
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Figure 5. Bit error rate (BER) comparisons for orthogo-
nal frequency-division multiplexing (OFDM) and wavelet filter
bank systems (S D 5). OMP, orthogonal matching pur-
suit; SNR, signal-to-noise ratio; StOMP, stagewise orthogonal

matching pursuit.

reduce the MSE; and the curve gets flat when it approaches
10�3. So it is a reasonable trade-off to choose the length
of pilots or training sequences between 60 and 80 while
considering their nonnegligible overheads.

Additionally, we also change the number of channel
multipath to S D 20, which treats the abundant multipath
propagations in the UWA channel. The other parameters
are kept the same. As shown in Figure 7, the performance
of channel estimation for S D 20 is worse than that of
S D 5, which implies that the sparser signals are much
easier for the recovery. The wavelet filter bank system still
outperforms OFDM. We also observe that homotopy is less
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Figure 6. Mean square error (MSE) comparisons for different
lengths of pilots or training sequences (S D 5). OFDM, orthog-
onal frequency-division multiplexing; OMP, orthogonal matching

pursuit; StOMP, stagewise orthogonal matching pursuit.
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Figure 7. Comparisons of channel estimation for orthogonal
frequency-division multiplexing (OFDM) and wavelet filter bank
systems (S D 20). MSE, mean square error; OMP, orthogonal
matching pursuit; SNR, signal-to-noise ratio; StOMP, stagewise

orthogonal matching pursuit.

Table III. Running times of different compressed sensing
algorithms.

CPU time (s)

Wavelet filter
Algorithm type OFDM bank system

Homotopy 0.876 0.584
StOMP 1.211 0.983
OMP 0.849 0.539

CPU, central processing unit; OFDM, orthogonal frequency-
division multiplexing; OMP, orthogonal matching pursuit;
StOMP, stagewise orthogonal matching pursuit.

influenced by the change of the sparsity than StOMP and
OMP, which demonstrates the robustness of the proposed
homotopy algorithm.

The complexities of the OMP, StOMP and homotopy
algorithm for two systems in terms of the central process-
ing unit running time are compared in Table III where
SNR is fixed at 30 dB and S D 20. The experiments are
performed using MATLAB v7.9 (R2009b) running on a
Lenovo laptop with an Intel Core 2 Duo central process-
ing unit at 2.5 GHz and 2 GB of memory. We notice that
the running time of StOMP is much larger than that of
OMP and homotopy, whereas the running time of homo-
topy is similar to that of OMP. Moreover, the speed of
sparse recovery for the wavelet filter bank system is much
faster than that for the OFDM system. The reason lies in
the different sizes of the measurement matrix in two sys-
tems, which directly determines the searching time of two
algorithms. In OFDM system, we use Np D 70 pilots to
reconstruct the sparse UWA channel, where S D 20 chan-
nel taps of a total of Ng D 300 taps are nonzero and the
size of the measurement matrix is 70 by 300. In the wavelet
filter bank system, we useNwt�L!C1D 65 training sym-
bols to reconstruct the UWA channel where S D 20 of only
Lw D 150 channel taps are nonzero. The size of the mea-
surement matrix is only 65 by 150, which is much slimmer
than that of OFDM.

6. CONCLUSION

In this paper, we have proposed a wavelet filter bank sys-
tem as the extension of the OFDM system for UWA com-
munications. We have exploited the convolutional structure
and formulated the pilot-assisted UWA channel estimation
as a sparse recovery problem. We have investigated the
RIP of the measurement matrix via eigenvalue analysis and
the Gershgorin circle theorem and proved that it satisfied
RIP. We have also proposed a low-complexity complex-
field homotopy algorithm for sparse channel estimation
regarding the fact that in practice the channel taps of each
path are usually complex valued. Simulation results show
that the wavelet filter bank system achieves more accurate
UWA channel estimation performance than the OFDM sys-
tem under the same conditions of bandwidth, duration, data
rate and channel profile. The proposed complex homotopy
algorithm outperforms StOMP and OMP in both systems
whereas its computational complexity is similar to OMP.
Because this work is based on the ICI-ignorant receiver,
future work will continue to explore the more complicated
ICI-aware receivers [21], as well as other low-complexity
CS algorithms and the possible trade-off between the data
rate and the channel estimation accuracy.
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