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Abstract— Channel estimation and hybrid precoding are
considered for multi-user millimeter wave massive multi-input
multi-output system. A deep learning compressed sensing (DLCS)
channel estimation scheme is proposed. The channel estimation
neural network for the DLCS scheme is trained offline using sim-
ulated environments to predict the beamspace channel amplitude.
Then the channel is reconstructed based on the obtained indices
of dominant beamspace channel entries. A deep learning quan-
tized phase (DLQP) hybrid precoder design method is developed
after channel estimation. The training hybrid precoding neural
network for the DLQP method is obtained offline considering the
approximate phase quantization. Then the deployment hybrid
precoding neural network (DHPNN) is obtained by replacing the
approximate phase quantization with ideal phase quantization
and the output of the DHPNN is the analog precoding vector.
Finally, the analog precoding matrix is obtained by stacking the
analog precoding vectors and the digital precoding matrix is
calculated by zero-forcing. Simulation results demonstrate that
the DLCS channel estimation scheme outperforms the existing
schemes in terms of the normalized mean-squared error and
the spectral efficiency, while the DLQP hybrid precoder design
method has better spectral efficiency performance than other
methods with low phase shifter resolution.

Index Terms— Channel estimation, deep learning, hybrid
precoding, massive MIMO, mmWave communications.

I. INTRODUCTION

DUE to the rich bandwidth resources of the millimeter
wave (mmWave), mmWave communication has attracted

broad attention and become an important technology in future
wireless communication systems [1], [2]. When operating at
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high frequency, the mmWave signal experiences high path loss.
Fortunately, this challenge can be overcome by directional
beamforming with a massive multi-input multi-output (MIMO)
antenna array. Since mmWave bands have short wavelengths,
large antenna arrays can be packed into small form factors [3].

Due to the large antenna arrays of mmWave communi-
cations, channel estimation requires a large number of time
slots as overhead. Note that the mmWave channels have
sparsity feature in the beamspace domain with hybrid pre-
coding [4]. Although the beamspace is typically addressed
in the mmWave lens antenna arrays, we can also obtain the
beamspace channel with hybrid precoding by introducing a
dictionary matrix consisting of column steering vectors. Sev-
eral channel estimation schemes have been proposed to explore
the beamspace channel sparsity. For examples, a distributed
grid matching pursuit (DGMP) channel estimation scheme was
proposed [4], where the dominant entries of the line-of-sight
(LOS) channel path were detected and updated iteratively;
an orthogonal matching pursuit (OMP) channel estimation
scheme was proposed to detect the dominant entries of mul-
tiple channel paths [5]; a simultaneous weighted orthogonal
matching pursuit (SWOMP) channel estimation scheme was
proposed [6], where the frequency-selective mmWave channels
were considered based on the OMP method. However, these
compressed sensing (CS) channel estimation schemes estimate
the dominant beamspace channel entries sequentially and
greedily, which cannot guarantee the global optimality [7].

After the channel estimation of mmWave communications,
hybrid precoding consisting of analog precoding and digital
precoding is usually adopted. Analog precoding aims to form
directional beams using phase shifter network, while digital
precoding is designed to mitigate interference of multiple data
streams. Several hybrid precoding methods have been pro-
posed for single-user multi-stream mmWave communication
systems. For examples, a hybrid precoding algorithm was pro-
posed [8], where the analog precoding problem was formulated
as a sparse reconstruction problem and the OMP method was
adopted; to avoid the greed of the OMP method, the alternating
minimization method was used [9], where the hybrid precod-
ing problem was designed as a matrix decomposition problem
and the analog precoder and digital precoder were optimized
alternately; to reduce the computational complexity of the
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alternating minimization method, the hierarchical codebook
was used to obtain multiple beams and then form the analog
precoding [10], [11].

In the multi-user multi-stream mmWave communication
systems, the base station (BS) transmits multiple data steams
to serve all users simultaneously. To improve the spectral effi-
ciency, the beamsteering codebook based on steering vectors
was used to formulate the analog precoder vectors and the
digital precoder was designed [12]. To consider the hard-
ware constraint of the limited phase shifter resolution, beam
allocation for multiple users was considered [13], where the
discrete fourier transformation (DFT) codebook was adopted
for analog precoding and the phase shifter resolution must
be proportional to the number of antennas. To remove the
constraint that the phase shifter resolution was related to the
number of antennas, a quantized angle linear search (QALS)
precoding scheme was proposed [14], where the angular
domain was quantized according to the limited resolution
of phase shifters and a linear search method was used to
obtain the optimal analog beamforming vectors aligning with
the dominant channel paths. However, these hybrid precoding
schemes design the analog precoder using the steering vectors
of quantized angles, which is heavily constrained by the
resolution of phase shifters. When the mmWave system is
equipped with low resolution phase shifters, there is a small
number of available steering vectors of quantized angles. Since
the angles of arrival (AoAs) of channel paths are randomly
distributed, it cannot guarantee that the precoding based on
these limited steering vectors can always have the high beam-
forming gain. Therefore these hybrid precoding schemes may
have unsatisfactory spectral efficiency performance if none of
these limited steering vectors can be aligned with the AoAs
well.

Recently, the application of deep learning to mmWave
communications has received much attention owing to the
capability of deep learning to solve complicated nonlin-
ear problems [15]–[17]. For examples, a machine learning
based beam prediction scheme was proposed [18], where
the machine learning tools and situational awareness were
combined to learn the beam information (power, optimal
beam index, etc) from past observations; a learned denoising
based approximate message passing network was proposed
to estimate the mmWave communication system with lens
antenna array [19], where the noise term was detected and
removed to estimate the channel. However, channel estimation
for mmWave massive MIMO systems with hybrid precoding
was not considered [19]. Besides, a deep learning based
beamforming design method was proposed [20], where a
beamforming neural network was trained to learn how to opti-
mize the beamformer for maximizing the spectral efficiency;
a deep reinforcement learning hybrid precoding method was
proposed [21]. However, both these two deep learning hybrid
precoder design methods neglect the constraint of limit reso-
lution of phase shifters.

In this paper, we investigate sparse channel estimation and
hybrid precoding considering the limited resolution of phase

shifters for multi-user mmWave massive MIMO systems. The
paper has the following two main contributions.

1) We propose a deep learning compressed sensing (DLCS)
channel estimation scheme for the multi-user mmWave mas-
sive MIMO systems. The DLCS scheme consists of beamspace
channel amplitude estimation and channel reconstruction.
In the offline training stage, we train the channel esti-
mation neural network (CENN) using the simulated envi-
ronment based on the mmWave channel model. Then in
the online deployment stage, the correlation between the
received signal vectors and the measurement matrix is fed
into the trained CENN to predict the beamspace channel
amplitude. Afterwards, the indices of dominant entries of
beamspace channel are obtained, based on which the chan-
nel can be reconstructed. Unlike the existing work that
estimates the dominant beamspace channel entries sequen-
tially [4]–[6], we estimate dominant entries simultaneously,
which will be shown to have better channel estimation
performance.

2) We propose a deep learning quantized phase (DLQP)
hybrid precoding method for the multi-user mmWave massive
MIMO systems. In the DLQP method, we first design the
analog precoder and then the digital precoder. In the offline
training stage, we obtain the training hybrid precoding neural
network (THPNN) using the estimated channel vector and real
channel vector of each user, where the approximate phase
quantization is considered. Then in the online deployment
stage, we obtain the deployment hybrid precoding neural
network (DHPNN) by replacing the approximate phase quanti-
zation in the THPNN with ideal phase quantization, where the
estimated channel vector of each user is fed into the DHPNN
to obtain the analog precoding vector. Afterwards, the analog
precoding matrix is obtained by stacking the analog precoding
vectors of all users, based on which the digital precoding
matrix can be calculated by zero-forcing (ZF).

The rest of the paper is organized as follows. In Section II,
we introduce the system model and formulate the problem of
channel estimation for the multi-user mmWave massive MIMO
systems with hybrid precoding. In Sections III, we propose the
DLCS channel estimation scheme. In Section IV, we develop
the DLQP hybrid precoder design method. The simulation
results are provided in Section V. Finally, Section VI concludes
the paper.

We use the following notations. Symbols for vectors (lower
case) and matrices (upper case) are in boldface. (·)T , (·)∗,
(·)H , and (·)−1 denote the transpose, conjugate, conjugate
transpose (Hermitian), and inverse, respectively. We use IK
to represent identity matrix of order K . The set of P × Q
complex-valued matrices and real-valued matrices are denoted
by CP×Q and RP×Q, respectively. We use E{·} to represent
expectation. The l2-norm of a vector and Frobenius norm of a
matrix are denoted by �·�2 and �·�F , respectively. We use a[p]
to denote the pth entry of a. Complex Gaussian distribution
is denoted by CN . We use | · | to denote the absolute value.
Im(a) and Re(a) denote the imaginary and real parts of a,
respectively.
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Fig. 1. Block diagram of downlink transmission in the multi-user mmWave
massive MIMO system.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We first introduce the system model of multi-user mmWave
massive MIMO. Then the channel estimation problem is
formulated as a CS problem to estimate the sparse channel
in the beamspace.

A. System Model

We consider a downlink multi-user mmWave massive
MIMO communication system that comprises a BS and U
users with single antenna, as shown in Fig. 1. The BS is
equipped with a uniform linear array (ULA) [1]. Note that the
present method can be generalized to other array structures.
Let NA and NR denote the numbers of antennas and RF
chains at the BS, respectively. Hybrid precoding is typically
adopted, where the number of antennas is much larger than
that of RF chains, i.e., NA � NR [2]. We consider the
orthogonal multiple access, where the number of active users
simultaneously connected with the BS is no larger than the
number of RF chains, i.e., U ≤ NR [10]. If U < NR,
the BS will only turn on U RF chains to serve the U users
simultaneously and turn off NR − U RF chains, which will
save the power consumed at the BS.

For downlink transmission, the BS performs hybrid pre-
coding, which consists of baseband digital precoding and RF
analog precoding [13]. The received signal of all U users,
denoted by ydl ∈ CU , can be represented as

ydl = HFRFBs+ n (1)

where FR ∈ CNA×U and FB ∈ CU×U denote the analog
precoder and digital precoder, respectively. To normalize the
power of the hybrid precoder, we set �FRFB�2F = U .
We denote the signal vector by s ∈ CU satisfying E{ssH} =
IU and additive white Gaussian noise (AWGN) vector by
n ∈ CU satisfying n ∼ CN (0, σ2IU ). The channel matrix
for the BS and all users is denoted by

H � [h1, . . . ,hU ]T ∈ C
U×NA . (2)

There are different kinds of channel model in mmWave
systems, such as the clustered mmWave channel model
and the Saleh-Valenzuela mmWave channel model [2], [22].
We choose the Saleh-Valenzuela mmWave channel model in

our paper. The channel vector hu ∈ CNA for the BS and the
uth user is represented as

hu =
√
NA
Lu

Lu∑
i=1

hu,i =
√
NA
Lu

Lu∑
i=1

gu,iα(NA, θu,i) (3)

where the channel vector, number of multiple channel paths,
and complex gain of the ith path are denoted by hu,i, Lu, and
gu,i, respectively. Typically hu consists of one LOS path (the
1st channel path), and Lu− 1 non-line-of-sight (NLOS) paths
(the ith channel path for 2 ≤ i ≤ Lu). The steering vector
α(N, θ) can be expressed as

α(N, θ) =
1√
N

[
1, ejπθ, . . . , ejπθ(N−1)

]T
. (4)

Denote the AoA for the ith path of the uth user by ϑu,i, which
is uniformly distributed over [−π, π) [4], [23]. Then we have
θu,i � sinϑu,i if the distance between adjacent two antennas
at the BS is half-wave length [4].

B. Problem Formulation

To design FB and FR for downlink data transmission, H
should be estimated. Based on channel reciprocity, the estimate
of downlink channel can be obtained by employing uplink
channel estimation to estimate H . Note that the proposed
DLCS channel estimation scheme can also be used for the
downlink channel estimation. Since the BS usually has more
computing power than each user in practice, we consider the
uplink channel estimation where the neural network (NN)
is trained and utilized for prediction at the BS. For uplink
channel estimation, mutually orthogonal pilot sequences are
transmitted by all users to distinguish different signals from
different users for K times. Denote the pilot matrix consisted
of the U mutually orthogonal pilot sequences from U users
by P ∈ C

U×U . For the uplink pilot transmission, we use
K different analog precoding matrices and digital precoding
matrices, denoted by F k

R ∈ CNA×NR and F k
B ∈ CNR×NR ,

respectively, for k = 1, 2, . . . ,K . The pilot sequences received
at the BS for the kth sending are given by

Y ul
k = (F kRF

k
B)THTP + (F k

RF
k
B)TNk (5)

where the AWGN matrix for the kth transmission is denoted
by Nk. Each entry of Nk obeys CN (0, σ2). Based on
the orthogonality of U mutually orthogonal pilot sequences,
i.e., PPH = IU , we multiply Y ul

k by PH and obtain

Rk � Y ul
k P

H = (F k)THT + Ñk (6)

where

F k � F kRF
k
B ∈ C

NA×NR ,

Ñk � (F k
RF

k
B)TNkP

H ∈ C
NR×U . (7)

After each user repeatedly transmits orthogonal pilot
sequences K times, Rk for k = 1, 2, . . . ,K can be stacked
as

R = [RT
1 , . . . ,R

T
K ]T = F THT + Ñ (8)
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Fig. 2. Block diagram of the DLCS channel estimation scheme: offline training and online deployment.

where

F � [F 1, . . . ,FK ] ∈ CNA×NRK ,

Ñ � [Ñ
T

1 , . . . , Ñ
T

K ]T ∈ CNRK×U . (9)

Note that NA > NRK since NA � NR and we need a small
number of time slots for channel training. Denote the uth
column of R by ru for u = 1, 2, . . . , U . Then ru can be
represented as

ru = F Thu + ñu (10)

where ñu is the uth column of Ñ .
Note that the mmWave channels have sparsity feature in the

beamspace domain [4], [6]. We define

hbu = Ahu (11)

as a beamspace channel vector where A ∈ CG×NA is the
dictionary matrix consisted of G column vectors α(NA, ρt),
with ρt � −1 + 2(t− 1)/G representing the tth point of the
angle grid. Note that the range of AoAs is quantified into G
grids for t = 1, 2, . . . , G. Based on the fact that AHA =
GINA/NA, eq. (11) can be further rewritten as

ru =
NA
G
F TAHhbu + ñu. (12)

Due to the sparse property of hbu, eq. (12) is essentially
a sparse recovery problem, which can be tackled by CS
techniques [24]. Note that the sparsity of hbu can be impaired
by channel power leakage caused by the limited beamspace
resolution of A [25], which indicates that hbu is not perfectly
sparse and many entries of hbu are small but nonzero. Sparse
channel estimation schemes such as OMP and DGMP esti-
mate the dominant beamspace channel entries in a sequen-
tial and greedy manner. However, they cannot guarantee the
global optimality. Therefore, in the following we will propose
a DLCS channel estimation scheme to estimate dominant
beamspace channel entries simultaneously.

III. DLCS CHANNEL ESTIMATION

The proposed DLCS channel estimation scheme consists of
beamspace channel amplitude estimation and channel recon-
struction. The main idea of the DLCS scheme is to estimate

first the beamspace channel amplitude using an offline-trained
CENN, and then sort the estimated beamspace channel ampli-
tude in descending order to select the indices of dominant
entries, and finally reconstruct the channel according to the
selected indices. The block diagram of the DLCS scheme is
illustrated in Fig. 2. The detailed steps of the DLCS scheme
are summarized in Algorithm 1.

A. Beamspace Channel Amplitude Estimation

We define

Φ � NA
G
F TAH ∈ C

NRK×G (13)

as the measurement matrix in (12). As shown in Algorithm 1,
we feed Φ and ru to obtain the estimate of hu, denoted by
ĥu, for u = 1, 2, . . . , U . The correlation vector between Φ
and ru, denoted by cu ∈ CG, can be expressed as

cu = ΦHru. (14)

The sparse channel estimation schemes sequentially select
the atoms, i.e., column vectors of Φ, which yield the greatest
correlation with ru. However, such greedy algorithms cannot
guarantee the global optimality, which motivates us to use
the NN to estimate the atoms simultaneously instead of
sequentially.

As shown in Fig. 2, the beamspace channel amplitude
estimation has two stages: the offline training of the CENN and
its online deployment. The CENN is first trained offline and
then used as the kernel of the beamspace channel amplitude
estimation. The input of the CENN is cu. The amplitude of
hbu can be denoted by

gu �
[∣∣∣hbu[1]

∣∣∣ , ∣∣∣hbu[2]
∣∣∣ , . . . , ∣∣∣hbu[G]

∣∣∣]T ∈ R
G. (15)

The output of the CENN is denoted by ĝu and is expected to
be gu.

As illustrated in Fig. 3, the adopted CENN in this work con-
sists of three hidden layers and a fully connected (FC) layer.
Since the NN can only deal with the real number, the input of
the CENN is a real-valued vector having 2G entries composed
by the imaginary and real parts of cu. Each hidden layer
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Algorithm 1 DLCS Channel Estimation
1: Input: Φ, ru, J .

2: Initialization: ĥ
b

u ← 0G.
3: (Beamspace Channel Amplitude Estimation)
4: Obtain cu via (14).
5: Input cu to the offline-trained CENN to get ĝu.
6: (Channel Reconstruction)
7: Obtain Γ based on J dominant entries of ĝu.

8: Compute ĥ
b

u[Γ] via (17).
9: Obtain ĥu according to (18).

10: Output: ĥu.

Fig. 3. Illustration of the CENN.

includes an FC layer and a batch normalization (BN) layer.
The numbers of neurons in these three hidden layers are set
as 1,024, 512, and 256. The activation function adopted in the
FC layer is the ReLU function, which can be represented as
fRe(x) = max(0, x).

During the offline training of the CENN, we generate
the dataset of cu and gu based on the simulated mmWave
channel environment. With the beamspace channel amplitude
in (15) and the correlation of the received signals and the
measurement matrix in (14), the training data of cu and gu can
be obtained. In fact, the process to obtain cu and gu involves
the following four steps: i) we randomly generate a channel
vector based on the mmWave channel model in (3); ii) we
obtain gu based on (15); iii) we compute the received signal
vector ru based on (10); iv) we obtain the correlation vector
cu based on (14). We divide the data set into the training set
and the validation set randomly, where the size of the training
set is nine times the size of the validation set. The output of
the CENN is ĝu.

The training of the CENN aims to minimize the difference
between ĝu and gu. The difference, typically named as the
loss in machine learning, can be calculated in several ways.
In this work, we calculate the loss by measuring the mean
square error as [15]

fLossCS(gu, ĝu) =
1
G

G∑
n=1

(gu[n]− ĝu[n])2 . (16)

We adopt the adaptive moment estimation (Adam) optimizer
to train the CENN by TensorFlow. The CENN is trained
for 1,000 epochs, where 50 mini-batches are utilized in each
epoch. The learning rate is set to be a step function, which

decreases with training epochs. The learning rate is initialized
with the value of 0.01 and decreases 5-fold every 400 epochs.

During the online deployment of the CENN, we obtain the
real measured ru from practical mmWave channel environ-
ments. We compute cu based on (14), which is then fed to
the offline-trained CENN. The prediction of gu by the CENN
is ĝu.

B. Channel Reconstruction

Note that the sparsity of hbu can be impaired by channel
power leakage caused by the limited beamspace resolution of
A [25], which indicates that hbu is not perfectly sparse and
many entries of hbu have small but nonzero values. Denote
the number of dominant entries of gu by J , which is the
beamspace channel sparse level. In the online deployment
stage, we sort ĝu in descending order according to the absolute
value of ĝu. Then we obtain the indices of the first J entries,
which are the prediction of the indices of J dominant entries
in gu.

We denote the prediction of these J indices by Γ ∈ RJ .

We further let ĥ
b

u denote an estimate of hbu. We initialize ĥ
b

u

to be zero. Then the J dominant entries of ĥ
b

u can be computed
via the least squares (LS) estimation as

ĥ
b

u[Γ] = (ΦH
Γ ΦΓ)−1ΦH

Γ ru (17)

where ΦΓ consists of J columns of Φ and the column indices
are denoted by Γ. Then using the result AHA = GINA/NA,
we obtain the estimated channel vector for the uth user based
on (11) as

ĥu =
NA
G
AH ĥ

b

u. (18)

It is shown that the proposed DLCS channel estimation
scheme can avoid the greedy search that is commonly adopted
by the existing sparse channel estimation schemes based
on CS, since the DLCS scheme estimates dominant entries
simultaneously instead of sequentially.

IV. DLQP HYBRID PRECODER DESIGN

Hybrid precoding is usually required for downlink data
transmission after the channel estimation. In the proposed
DLQP hybrid precoder design method, we first design the
analog precoder and then the digital precoder. The main idea
of the DLQP scheme is to first train the THPNN using
the estimated channel vectors, where the approximate phase
quantization is considered. Then the DHPNN is obtained by
replacing the approximate phase quantization in THPNN with
ideal phase quantization, where the estimated channel vectors
are fed into the DHPNN to obtain the analog precoder vectors.
Finally the analog precoding matrix is obtained by stacking the
analog precoding vectors of all users and the digital precoding
matrix can be calculated by ZF. The block diagram of the
DLQP method is illustrated in Fig. 4. The detailed steps of
the DLQP method is summarized in Algorithm 2.
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Fig. 4. Block diagram of the DLQP hybrid precoder design: offline training and online deployment.

Algorithm 2 DLQP Hybrid Precoder Design

1: Input: ĥu.
2: (Analog Precoder Design)
3: Replace the AQ layer of the offline-trained THPNN by the

IQ layer to obtain the DHPNN.
4: Input ĥu to the DHPNN to get fu.
5: Obtain FR according to (27).
6: (Digital Precoder Design)
7: Compute Ĥ based on (28).
8: Obtain Heff according to (29).
9: Compute FB via (30).

10: Normalize each column of FB via (31).
11: Output: FR, FB .

A. Analog Precoder Design

Denote the analog precoder vector and approximate analog
precoder vector by fu � [fu,1, fu,2, . . . , fu,NA ]T ∈ CNA

and f̄u � [f̄u,1, f̄u,2, . . . , f̄u,NA ]T ∈ CNA , respectively, for
u = 1, 2, . . . , U . As shown in Fig. 5, ĥu is fed to the THPNN
to obtain f̄u, while ĥu is fed to the DHPNN to obtain fu. Note
that the difference between the THPNN and DHPNN is that
we use approximate phase quantization in the THPNN so that
the NN can be trained, while we use ideal phase quantization
in the DHPNN to meet the practical constraint of limited phase
shifter resolution.

We define B as the quantization bit number of the phase
shifters used at the BS, where the RF phase is quantized into
Q � 2B discrete values. Each entry of fu is randomly drawn
from the set {ej2πn/Q, n = 1, 2, . . . , Q}. The hybrid precoder
design schemes based on beamsteering codebooks design the
analog precoder vector as the steering vector of the LOS
channel path [12]–[14]. However, such schemes require that
Q ≥ NA to obtain high beamforming gain, which will have
unsatisfactory performance when Q < NA. This requirement
motivates us to use the NN to design the analog precoder when
Q < NA.

As shown in Fig. 4, the hybrid precoder design has
two stages: the offline training of the THPNN and online

deployment of the DHPNN, where the DHPNN is obtained
based on the THPNN by replacing one layer of the THPNN.
The THPNN is first trained offline and then the DHPNN is
obtained, which is used as the kernel of the hybrid precoder
design. The input of the THPNN and DHPNN is ĥu. The
outputs of the DHPNN and the THPNN are the analog
precoder vector fu and approximate analog precoder vector
f̄u, respectively.

As illustrated in Fig. 5, both the adopted THPNN and
DHPNN consist of six layers, where five of them are shared.
Since the NN can only deal with the real number, the input
of the THPNN and DHPNN is a real-valued vector having
2NA entries composed by the imaginary and real parts of ĥu.
Each of the first four layers consists of a convolutional (Conv)
layer and a pooling (Pool) layer. The kernel size and strides
of each Conv layer are set to be five and one, respectively.
The number of filters of these three Conv layers are set as
16, 32, and 64, respectively. Both the pool size and strides
of each Pool layer are set to be two. The activation function
adopted in the first three layers is the ReLU function, while
that adopted in the fourth layer is the Sigmoid function, which
can be represented as fSig(x) = 1

1+e−x . Since the output of
the FC and Pool layers can only be real number, we cannot
directly obtain the complex-valued fu. Then the output of the
fourth layer is the phase of analog precoder vector, which is
denoted by

φ � [ρ1, ρ2, . . . , ρNA ]T ∈ R
NA (19)

where ρn ∈ [0, 2π), for n = 1, 2, . . . , NA. Since the RF phase
is quantized into Q discrete values, in the DHPNN we use
the ideal quantization (IQ) layer to quantize the continuous
phase vector φ into the discrete phase vector. Denote the IQ
function and the step function by Λ(·) and ε(·), respectively,

where ε(x) =

{
0, x < 0,
1, x ≥ 0.

Then Λ(·) can be written as

Λ(x) � 2π
Q

Q∑
q=1

ε

(
x− 2πq

Q

)
, x ∈ [0, 2π). (20)
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Fig. 5. Illustration of the THPNN for offline training and DHPNN for online deployment.

It is shown in Fig. 6 that Λ(x) is not differentiable when
x = 2πq/Q, q = 1, 2, . . . , Q, which indicates that stan-
dard deep learning training algorithms, such as stochastic
gradient descent (SGD), cannot be directly applied to train
the NN. To overcome this problem, we use the approximate
quantization (AQ) layer in the THPNN for offline training
instead of the IQ layer. Therefore the DLQP hybrid pre-
coder design method uses two NNs. However, the DLCS
channel estimation scheme needs no quantization. There-
fore the DLCS channel estimation scheme uses only one
NN. Denote the AQ function by Γ(x) [26], which can be
represented as

Γ(x) � π

Q

Q∑
q=1

tanh
(
η

(
x− 2πq

Q

))
+ 1, x ∈ [0, 2π) (21)

where η a constant to represent the degree of approximation.
As shown in Fig. 6, it is more accurate for Γ(x) to approximate
Λ(x) if we set η as a larger number. It is also shown that Γ(x)
is differentiable for x ∈ [0, 2π). Then we use Γ(x) to quantize
φ in the THPNN for offline training. Denote the phase vector
after quantization by ψ̄ � [ψ̄1, ψ̄2, . . . , ψ̄NA ]T ∈ RNA , which
can be represented as

ψ̄n = Γ(ρn), n = 1, 2, . . . , NA. (22)

Based on the phase vector ψ̄, the approximate analog precoder
vector f̄u can be obtained in the analog precoder reconstruc-
tion (AR) layer. By setting ψ̄n as the phase of f̄u,n, f̄u,n can
be represented as

f̄u,n = ejψ̄n , n = 1, 2, . . . , NA. (23)

During the offline training of the THPNN, we generate the
dataset of ĥu and hu based on the output of the CENN and
simulated mmWave channel environment. With the channel

Fig. 6. Illustration of the ideal quantization and approximate quantization.

vector in (3) and the estimated channel vector in (18), the train-
ing data of ĥu and hu can be obtained. In fact, the process
to obtain ĥu and hu involves the following five steps:
i) we randomly generate the channel vector hu based on
the mmWave channel model in (3); ii) we compute the
received signal vector ru based on (10); iii) we obtain the
correlation vector cu based on (14); iv) we feed cu to the
offline-trained CENN for the DLCS channel estimation to get
ĝu; v) we obtain the estimated channel vector ĥu based on
the channel reconstruction in (18). The output of the THPNN
is f̄u.

The training of the THPNN aims to maximize the beam-
forming gain, i.e., the inner product of f̄u and hu. Since the
THPNN is trained to minimize the loss, we calculate the loss
as the opposite number of the inner product, which can be
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represented as [18]

fLossQP(f̄u,hu) = −
∣∣∣f̄Tuhu∣∣∣ . (24)

The training of the CENN aims to minimize the difference
between ĝu and gu, while the training of the THPNN aims to
maximize the beamforming gain. Therefore the loss function
in (16) is different from that in (24). Note that the output of
the NN is the analog precoder vector f̄u, while we need to
calculate the analog precoding matrix FR so that the spec-
tral efficiency can be obtained. However, the computational
process from f̄u to FR is not differentiable, which cannot
be applied to the NN. Therefore we do not set the spectral
efficiency as the loss. We adopt the adaptive moment estima-
tion (Adam) optimizer to train the THPNN by TensorFlow.
The THPNN is trained for 6,000 epochs, where 200 mini-
batches are utilized in each epoch. The learning rate is set to
be a step function. The learning rate is initialized with the
value of 0.01 and decreases 2-fold every 2000 epochs.

During the online deployment stage, we obtain the DHPNN
based on the offline-trained THPNN by replacing the AQ
layer in the THPNN with IQ layer. To obtain the input of the
THPNN ĥu, we obtain the real measured ru from practical
mmWave channel environments. We compute cu based on
(14), which is then fed to the offline-trained CENN for the
DLCS channel estimation to get ĝu. We obtain the estimated
channel vector ĥu based on the channel reconstruction in (18).
We then feed ĥu to the DHPNN for the DLQP hybrid precoder
design to get fu. Note that different from the offline training
of the THPNN, we use the IQ function Λ(x) to quantize φ
in the DHPNN, which ensures that each entry of fu is drawn
from the set {ej2πn/Q, n = 1, 2, . . . , Q}. Denote the phase
vector after quantization by ψ � [ψ1, ψ2, . . . , ψNA ]T ∈ RNA ,
which can be represented as

ψn = Λ(ρn), n = 1, 2, . . . , NA. (25)

Based on the phase vector ψ, the analog precoder vector fu
can be obtained. By setting ψn as the phase of fu,n, fu,n can
be represented as

fu,n = ejψn , n = 1, 2, . . . , NA. (26)

After obtaining fu in the online deployment stage, the ana-
log precoding matrix FR can be represented as

FR = [f1,f2, . . . ,fU ]. (27)

It is shown in (24) that the analog precoder is designed
to maximize the beamforming gain, where the quantization of
the RF phase is considered. Note that although we use the AQ
layer for offline training, we adopt the IQ layer in the online
deployment stage, which guarantees the consistency of our
adopted NN and the practical hardware constraint of limited
phase shifter resolution.

B. Digital Precoder Design

We denote the estimated channel matrix for the BS and all
users by

Ĥ �
[
ĥ1, . . . , ĥU

]T
∈ C

U×NA . (28)

We further denote the effective channel matrix by

Heff � ĤFR. (29)

Analog precoding aims to form directional beams using phase
shifter network, while digital precoding is designed to mitigate
interference of multiple data streams after analog precoding.
Then the ZF digital precoding matrix can be represented by

FB =HH
eff(HeffH

H
eff)−1. (30)

To satisfy the total power constraint, each column of the
designed digital precoder, denoted by fB,u, should be nor-
malized, i.e.,

fB,u = fB,u/
∥∥FRfB,u∥∥2

(31)

such that
∥∥FRfB,u∥∥2

2
= 1, u = 1, 2, . . . , U .

It is shown that the proposed DLQP hybrid precoder design
method can obtain the analog precoder considering the quan-
tized phase constraint, which is of great value in practical
mmWave systems.

V. SIMULATION RESULTS

In the following we will present the performance evaluation
for the proposed DLCS channel estimation scheme and the
proposed DLQP hybrid precoder design method. Considering
a multi-user mmWave massive MIMO communication system,
the BS equipped with NR = 4 RF chains and NA = 64
antennas serves U = 3 users with single antenna. We set
G = 128 according to [6], and we set the number of
multiple paths in mmWave channel as Lu = 2, where gu,1 ∼

CN (0, 1) and gu,2 ∼ CN (0, 0.5) [6], [11]. For the uplink
pilot transmission, we set F kB = INR . Therefore the hybrid
precoding matrix is equal to the analog precoding matrix
and is also a random matrix. The quantization bit number
of the phase shifters used at the BS is B = 4, leading to
Q = 16 [6]. We set η = 100. Since hbu is not ideally
sparse due to the power leakage, the beamspace channel
sparse level should be larger than Lu, i.e., J > 2. We set
J = 6, 7 in performance simulating. Note that the CENN is
trained to predict the beamspace channel amplitude, where
the training process of the CENN is independent of J . The
proposed DLCS channel estimation scheme is compared with
the existing OMP [5] and DGMP [4] channel estimation
schemes, while the proposed DLQP hybrid precoder design
method is compared with the existing QALS [14] hybrid
precoder design method. We also compare the DLQP method
with the Exhaustion hybrid precoder design method, i.e., we
generate the analog precoding matrix FR for 30, 000 times,
where each entry of FR is randomly drawn from the set
{ej2πn/Q, n = 1, 2, . . . , Q}, and then the digital precoder
is designed according to Algorithm 2. We select the hybrid
precoder with the largest spectral efficiency as the output of
the Exhaustion hybrid precoder design method.

We first evaluate the performance of the proposed DLCS
channel estimation scheme from Fig. 7 to Fig. 10. As shown
in Fig. 7, the channel estimation performance for the proposed
DLCS scheme together with the existing schemes is compared
in terms of SNR. The channel estimation performance is
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Fig. 7. Comparisons of channel estimation performance in terms of SNR
for different schemes.

measured by the normalized mean-squared error (NMSE),
which is defined by

NMSE �
∑U
u=1 �ĥu − hu�22∑U

u=1 �hu�22
. (32)

We use K = 8 time slots to transmit pilots for uplink
channel estimation. To make a fair comparison, we fix the
pilot training time slots to be eight for the OMP and DGMP
schemes. It is shown that the DLCS scheme has better
channel estimation performance than existing schemes. When
SNR = 10 dB, the DLCS scheme with J = 6 has 51.7%
and 65.8% performance improvements over the OMP and
DGMP schemes, respectively, while the DLCS scheme with
J = 7 has 51.3% and 65.5% performance improvements
over the OMP and DGMP schemes, respectively. We explain
the reason for the performance improvements as follows.
The OMP scheme estimates the beamspace channel dominant
entries sequentially, which cannot guarantee global optimality.
The DGMP scheme only estimates the LOS path, while the
proposed DLCS scheme can simultaneously estimate all the
dominant beamspace channel entries.

As shown in Fig. 8, we compare the spectral efficiency for
the proposed DLCS scheme with the existing schemes in terms
of SNR. Based on the estimated channel, there are various
methods to design the hybrid precoding for mmWave downlink
transmission. Similar to [6], in this work we wish to compare
the upper bound of the downlink spectral efficiency, which can
be simply measured by the fully-digital precoding. The ZF pre-

coding matrix can be represented by F dl � (Ĥ
∗
Ĥ

T
)−1Ĥ

∗
.

To meet the total power budget, the uth row of F dl, denoted by
fdl
u , should be normalized, i.e., fdl

u ← fdl
u /�fdl

u �2 such that
�fdl

u �2 = 1 for u = 1, 2, . . . , U . Then the spectral efficiency
is given by [6]

R �
U∑
u=1

log2

⎛⎜⎝1 +
1
U

∣∣∣fdl
u hu

∣∣∣2
1
U

∑
i�=u

∣∣∣fdl
i hu

∣∣∣2 + σ2

⎞⎟⎠ . (33)

Fig. 8. Comparisons of spectral efficiency in terms of SNR for different
channel estimation schemes.

Fig. 9. Comparisons of channel estimation performance in terms of the
number of time slots for channel training for different schemes.

It is seen from Fig. 8 that the DLCS scheme has better
channel estimation performance than existing schemes. When
SNR = 10 dB, the DLCS scheme with J = 6 has 2.5%
and 7.8% performance improvements over the OMP and
DGMP schemes, respectively, while the DLCS scheme with
J = 7 has 2.6% and 8.3% performance improvements over
the OMP and DGMP schemes, respectively. The reason for
the smaller spectral efficiency gap between different schemes
than the NMSE gap is that the NMSE performance is much
more sensitive to the success rate of the sparse recovery,
while the spectral efficiency performance is determined by the
beamforming gain and is less sensitive to the success rate of
the sparse recovery.

In Fig. 9, the channel estimation performance for the DLCS,
OMP, and DGMP schemes is compared in terms of the
number of time slots for channel training. We use the same
number of pilot training time slots for the DLCS, OMP, and
DGMP schemes. SNR is fixed as 15 dB. From Fig. 9, it is
shown that the DLCS scheme has the best channel estimation
performance. When fixing the number of pilot training time
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Fig. 10. Comparisons of spectral efficiency in terms of the number of time
slots for channel training for different channel estimation schemes.

Fig. 11. Comparisons of spectral efficiency in terms of SNR for different
hybrid precoder design methods.

slots to be K = 7, the DLCS scheme with J = 6 has
56.1% and 85.2% performance improvements over the OMP
and DGMP schemes, respectively, while the DLCS scheme
with J = 7 has 56.0% and 84.3% performance improvements
over the OMP and DGMP schemes, respectively.

As shown in Fig. 10, we compare the spectral efficiency
for different schemes in terms of the number of time slots
for channel training. The system parameters for performance
simulation are set to be the same as those for Fig. 9. It is shown
that the DLCS scheme can have better channel estimation
performance than the OMP and DGMP schemes. When the
number of channel training time slots is more than eight,
the spectral efficiency of the DLCS scheme remains constant,
indicating that K = 8 is sufficient to obtain the full channel
state information.

In the following, we evaluate the performance of the
proposed DLQP hybrid precoder design method in Fig. 11
and Fig. 12. Fig. 11 compares of the spectral efficiency for
the proposed DLQP hybrid precoder design method together
with the existing methods in terms of SNR. Since the QALS
method needs high phase shifter resolution to obtain analog

Fig. 12. Comparisons of spectral efficiency in terms of the number of time
slots for channel training for different hybrid precoder design methods.

beamforming vectors aligning with the dominant channel
paths, we also simulate the QALS method with Q = 64. It is
seen from Fig. 11 that the DLQP method has better spectral
efficiency performance than existing methods. When SNR =
10 dB, the DLQP method with J = 6 has 59.9%, 83.6% and
3.5% performance improvements over the Exhaustion, QALS
with Q = 16 and QALS with Q = 64 methods, respectively,
while the DLQP method with J = 7 has 62.0%, 86.5% and
3.6% performance improvements over the Exhaustion, QALS
with Q = 16 and QALS with Q = 64 methods, respectively.
We explain the reason for the performance gap as follows.
In the Exhaustion method, although we generate the analog
precoding matrix FR for 30, 000 times, the number of the
total possible FR should be QNAU = 1.55× 10231, which is
far more than the acceptable computational complexity. In the
QALS method, the AoA of the LOS channel path cannot be
aligned with well with the small number of available steering
vectors of quantized angles.

As shown in Fig. 12, we compare the spectral efficiency for
different hybrid precoding methods in terms of the number
of time slots for channel training. The system parameters
for performance simulation are set to be the same as those
for Fig. 9. It is shown that the DLQP method can have
better spectral efficiency performance than the Exhaustion and
QALS methods. When fixing the number of pilot training
time slots to be K = 7, the DLQP method with J = 6 has
49.3%, 70.1% and 2.9% performance improvements over the
Exhaustion, QALS with Q = 16 and QALS with Q = 64
methods, respectively, while the DLQP method with J = 7
has 51.0%, 71.0% and 2.7% performance improvements over
the Exhaustion, QALS with Q = 16 and QALS with Q = 64
methods, respectively.

VI. CONCLUSION

We proposed a DLCS channel estimation scheme and a
DLQP hybrid precoder design method for the multi-user
mmWave massive MIMO communication systems. The pro-
posed DLCS scheme and DLQP method were compared
with the existing works in the aspect of NMSE and spectral
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efficiency. Simulation results showed that the proposed DLCS
scheme has better channel estimation performance than exist-
ing schemes and the proposed DLQP method has high spectral
efficiency with low resolution of phase shifters. As a future
work, it is worth developing the channel estimation and hybrid
precoding design for wideband multi-user mmWave massive
MIMO transmission adopting deep learning.

REFERENCES

[1] R. W. Heath, N. Gonzalez-Prelcic, S. Rangan, W. Roh, and
A. M. Sayeed, “An overview of signal processing techniques for
millimeter wave MIMO systems,” IEEE J. Sel. Topics Signal Process.,
vol. 10, no. 3, pp. 436–453, Apr. 2016.

[2] P. Wang, Y. Li, L. Song, and B. Vucetic, “Multi-gigabit millimeter
wave wireless communications for 5G: From fixed access to cellu-
lar networks,” IEEE Commun. Mag., vol. 53, no. 1, pp. 168–178,
Jan. 2015.

[3] P. V. Amadori and C. Masouros, “Low RF-complexity millimeter-wave
beamspace-MIMO systems by beam selection,” IEEE Trans. Commun.,
vol. 63, no. 6, pp. 2212–2223, Jun. 2015.

[4] Z. Gao, C. Hu, L. Dai, and Z. Wang, “Channel estimation for millimeter-
wave massive MIMO with hybrid precoding over frequency-selective
fading channels,” IEEE Commun. Lett., vol. 20, no. 6, pp. 1259–1262,
Jun. 2016.

[5] K. Venugopal, A. Alkhateeb, R. W. Heath, and N. G. Prelcic, “Time-
domain channel estimation for wideband millimeter wave systems with
hybrid architecture,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), Mar. 2017, pp. 6493–6497.

[6] J. Rodriguez-Fernandez, N. Gonzalez-Prelcic, K. Venugopal, and
R. W. Heath, “Frequency-domain compressive channel estimation for
frequency-selective hybrid mmWave MIMO systems,” IEEE Trans.
Wireless Commun., vol. 17, no. 5, pp. 2946–2960, May 2018.

[7] W. Ma and C. Qi, “Beamspace channel estimation for millimeter
wave massive MIMO system with hybrid precoding and combin-
ing,” IEEE Trans. Signal Process., vol. 66, no. 18, pp. 4839–4853,
Sep. 2018.

[8] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath,
“Spatially sparse precoding in millimeter wave MIMO systems,” IEEE
Trans. Wireless Commun., vol. 13, no. 3, pp. 1499–1513, Mar. 2014.

[9] X. Yu, J.-C. Shen, J. Zhang, and K. B. Letaief, “Alternating minimization
algorithms for hybrid precoding in millimeter wave MIMO systems,”
IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 485–500,
Apr. 2016.

[10] Z. Xiao, T. He, P. Xia, and X.-G. Xia, “Hierarchical codebook design for
beamforming training in millimeter-wave communication,” IEEE Trans.
Wireless Commun., vol. 15, no. 5, pp. 3380–3392, May 2016.

[11] K. Chen, C. Qi, and G. Y. Li, “Two-step codeword design for millimeter
wave massive MIMO systems with quantized phase shifters,” IEEE
Trans. Signal Process., vol. 68, pp. 170–180, Jan. 2020.

[12] A. Alkhateeb, G. Leus, and R. W. Heath, “Limited feedback hybrid
precoding for multi-user millimeter wave systems,” IEEE Trans. Wireless
Commun., vol. 14, no. 11, pp. 6481–6494, Nov. 2015.

[13] X. Sun, C. Qi, and G. Y. Li, “Beam training and allocation for multi-
user millimeter wave massive MIMO systems,” IEEE Trans. Wireless
Commun., vol. 18, no. 2, pp. 1041–1053, Feb. 2019.

[14] L. Zhao, D. W. K. Ng, and J. Yuan, “Multi-user precoding and channel
estimation for hybrid millimeter wave systems,” IEEE J. Sel. Areas
Commun., vol. 35, no. 7, pp. 1576–1590, Jul. 2017.

[15] H. Ye, G. Y. Li, and B.-H. Juang, “Power of deep learning for channel
estimation and signal detection in OFDM systems,” IEEE Wireless
Commun. Lett., vol. 7, no. 1, pp. 114–117, Feb. 2018.

[16] Z. Qin, H. Ye, G. Y. Li, and B.-H.-F. Juang, “Deep learning in
physical layer communications,” IEEE Wireless Commun., vol. 26, no. 2,
pp. 93–99, Apr. 2019.

[17] R. Liu, G. Yu, and G. Y. Li, “User association for ultra-dense mmWave
networks with multi-connectivity: A multi-label classification approach,”
IEEE Wireless Commun. Lett., vol. 8, no. 6, pp. 1579–1582, Dec. 2019.

[18] Y. Wang, M. Narasimha, and R. W. Heath, “MmWave beam prediction
with situational awareness: A machine learning approach,” in Proc. IEEE
19th Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC),
Jun. 2018, pp. 1–5.

[19] H. He, C.-K. Wen, S. Jin, and G. Y. Li, “Deep learning-based channel
estimation for beamspace mmWave massive MIMO systems,” IEEE
Wireless Commun. Lett., vol. 7, no. 5, pp. 852–855, Oct. 2018.

[20] T. Lin and Y. Zhu, “Beamforming design for large-scale antenna arrays
using deep learning,” 2019, arXiv:1904.03657. [Online]. Available:
http://arxiv.org/abs/1904.03657

[21] Q. Wang and K. Feng, “PrecoderNet: Hybrid beamforming for mil-
limeter wave systems using deep reinforcement learning,” 2019,
arXiv:1907.13266. [Online]. Available: http://arxiv.org/abs/1907.13266

[22] J. Tao, C. Qi, and Y. Huang, “Regularized multipath matching pursuit for
sparse channel estimation in millimeter wave massive MIMO system,”
IEEE Wireless Commun. Lett., vol. 8, no. 1, pp. 169–172, Feb. 2019.

[23] K. Chen and C. Qi, “Beam training based on dynamic hierarchical
codebook for millimeter wave massive MIMO,” IEEE Commun. Lett.,
vol. 23, no. 1, pp. 132–135, Jan. 2019.

[24] Z. Qin, J. Fan, Y. Liu, Y. Gao, and G. Y. Li, “Sparse representation
for wireless communications: A compressive sensing approach,” IEEE
Signal Process. Mag., vol. 35, no. 3, pp. 40–58, May 2018.

[25] J. Brady, N. Behdad, and A. M. Sayeed, “Beamspace MIMO for
millimeter-wave communications: System architecture, modeling, analy-
sis, and measurements,” IEEE Trans. Antennas Propag., vol. 61, no. 7,
pp. 3814–3827, Jul. 2013.

[26] L. Rade and B. Westergren, Mathematics Handbook for Science and
Engineering. Lund, Sweden: Studentlitteratur, 1998.

Wenyan Ma (Student Member, IEEE) received the
B.S. degree (Hons.) in information engineering from
the Chien-Shiung Wu College, Southeast University,
Nanjing, China, in 2017, where he is currently
pursuing the M.S. degree in signal and informa-
tion processing. His research interests include signal
processing for millimeter wave communications and
massive multi-input multi-output (MIMO) systems.
He received the Eleventh International Conference
on Wireless Communications and Signal Process-
ing (WCSP) Best Paper Award in 2019.

Chenhao Qi (Senior Member, IEEE) received the
B.S. degree (Hons.) in information engineering from
the Chien-Shiung Wu College, Southeast University,
Nanjing, China, in 2004, and the Ph.D. degree in
signal and information processing from Southeast
University in 2010.

From 2008 to 2010, he visited the Department
of Electrical Engineering, Columbia University,
New York, NY, USA. Since 2010, he has been with
the Faculty of the School of Information Science
and Engineering, Southeast University, where he is

currently an Associate Professor. His research interests include millimeter
wave communications, massive multi-input multi-output (MIMO), satellite
communications and intelligent signal processing. He received the IEEE
Global Communications Conference (GLOBECOM) Best Paper Award and
the Eleventh International Conference on Wireless Communications and
Signal Processing (WCSP) Best Paper Award in 2019. He is an Exemplary
Reviewer of IEEE COMMUNICATIONS LETTERS in 2017 and an Exemplary
Editor of IEEE COMMUNICATIONS LETTERS in 2018. He is also an
Outstanding Associate Editor of IEEE ACCESS in 2018. He serves as an
Associate Editor for IEEE COMMUNICATIONS LETTERS, IEEE ACCESS, and
the IEEE Open Journal of the Communications Society. He serves as the Sym-
posium Co-Chair for international conferences, including the GLOBECOM,
WCSP, and the IEEE International Workshop on Signal Processing Advances
in Wireless Communications (SPAWC).

Authorized licensed use limited to: Southeast University. Downloaded on May 17,2020 at 01:41:08 UTC from IEEE Xplore.  Restrictions apply. 



MA et al.: SPARSE CHANNEL ESTIMATION AND HYBRID PRECODING USING DEEP LEARNING 2849

Zaichen Zhang (Senior Member, IEEE) was born
in Nanjing, China, in 1975. He received the B.S.
and M.S. degrees in electrical and information engi-
neering from Southeast University, Nanjing, China,
in 1996 and 1999, respectively, and the Ph.D. degree
in electrical and electronic engineering from The
University of Hong Kong in 2002. From 2002 to
2004, he was a Post-Doctoral Fellow with the
National Mobile Communications Research Labo-
ratory, Southeast University. He joined the School
of Information Science and Engineering, Southeast

University, in 2004, where he is currently a Professor. He has published over
200 articles and issued 40 patents. His current research interests include
6G mobile communication systems, optical wireless communications, and
quantum information processing.

Julian Cheng (Senior Member, IEEE) received
the B.Eng. degree (Hons.) in electrical engineer-
ing from the University of Victoria, Victoria, BC,
Canada, in 1995, the M.Sc.(Eng.) degree in math-
ematics and engineering from Queen’s University,
Kingston, ON, Canada, in 1997, and the Ph.D.
degree in electrical engineering from the University
of Alberta, Edmonton, AB, Canada, in 2003. He was
with Bell-Northern Research and Nortel Networks.
He is currently a Full Professor with the Faculty
of Applied Science, School of Engineering, The

University of British Columbia, Kelowna, BC, Canada. His current research
interests include digital communications over fading channels, statistical
signal processing for wireless applications, optical wireless communications,
and 5G wireless networks. He was the Co-Chair of the 12th Canadian
Workshop on Information Theory in 2011, the 28th Biennial Symposium
on Communications in 2016, and the 6th EAI International Conference on
Game Theory for Networks (GameNets 216). He has served as a Guest
Editor for a Special Issue of the IEEE JOURNAL ON SELECTED AREAS IN

COMMUNICATIONS ON OPTICAL WIRELESS COMMUNICATIONS. He is also
a Registered Professional Engineer with the Province of British Columbia,
Canada. He serves as the President for the Canadian Society of Information
Theory and the Secretary for the Radio Communications Technical Committee
of the IEEE Communications Society. He was a past Associate Editor of
IEEE TRANSACTIONS ON COMMUNICATIONS, IEEE TRANSACTIONS ON

WIRELESS COMMUNICATIONS, IEEE COMMUNICATIONS LETTERS, and
IEEE ACCESS. He serves as an Area Editor for IEEE TRANSACTIONS ON

COMMUNICATIONS.

Authorized licensed use limited to: Southeast University. Downloaded on May 17,2020 at 01:41:08 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


