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Abstract—Channel estimation is considered for multi-user
millimeter wave (mmWave) massive multi-input multi-output
system. A deep learning compressed sensing (DLCS) channel
estimation scheme is proposed, and it consists of beamspace
channel amplitude estimation and channel reconstruction. The
neural network (NN) for the DLCS scheme is trained offline
using simulated environments according to the mmWave channel
model. Then the correlation between the received signal vectors
and the measurement matrix is input into the trained NN to
predict the beamspace channel amplitude. Afterwards, the chan-
nel is reconstructed based on the obtained indices of dominant
beamspace channel entries. Simulation results demonstrate that
the proposed DLCS channel estimation scheme outperforms the
existing schemes including the orthogonal matching pursuit and
the distributed grid matching pursuit in terms of the normalized
mean-squared error and the spectral efficiency.

Index Terms—Channel estimation, mmWave communications,
deep learning, massive MIMO.

I. INTRODUCTION

Due to the rich bandwidth resources of the millimeter wave

(mmWave), mmWave communication has attracted broad at-

tention and become an important technology in future wireless

communication systems [1], [2]. The mmWave signal experi-

ences high path loss considering high frequency. Fortunately,

this challenge can be overcome by utilizing a massive multi-

input multi-output (MIMO) antenna array to achieve direc-

tional beam alignment and data transmission. Since mmWave

bands have short wavelengths, large antenna arrays can be

packed into small form factors.

Due to the large antenna arrays of mmWave communica-

tions, channel estimation requires large time slots overhead.

Note that the mmWave channels have sparsity feature in the

beamspace domain, where the beamspace channels can be

formed by either the lens antenna arrays or phase shifter

network [3], [4]. Several channel estimation schemes have

been proposed to explore the beamspace channel sparsity. For

examples, a distributed grid matching pursuit (DGMP) channel

estimation scheme was proposed in [3], where the channel

support was obtained and updated iteratively; an orthogonal

matching pursuit (OMP) channel estimation scheme was pro-

posed in [5]; a simultaneous weighted orthogonal matching

pursuit (SWOMP) channel estimation scheme was proposed

in [4], where the frequency-selective mmWave channels were

considered based on the OMP method. However, these com-

pressed sensing (CS) channel estimation schemes estimate

the dominant beamspace channel entries in a sequential and

greedy manner, which cannot guarantee the global optimali-

ty [6].

In this paper, we propose a deep learning compressed

sensing (DLCS) channel estimation scheme for the multi-user

mmWave massive MIMO systems. The DLCS scheme con-

sists of beamspace channel amplitude estimation and channel

reconstruction. In the offline training stage, we train the neural

network (NN) using the simulated environment based on the

mmWave channel model, and then in the online deployment

stage, the correlation between the received signal vectors and

the measurement matrix is input into the trained NN to predict

the beamspace channel amplitude. Afterwards, the indices of

dominant entries of beamspace channel are obtained, based

on which the channel can be reconstructed. Note that unlike

the existing work that estimates the dominant beamspace

channel entries sequentially [3]–[5], we estimate dominant

entries simultaneously, which will be shown to have better

channel estimation performance.

We use the following notations in our paper. Symbols for

vectors (lower case) and matrices (upper case) are in boldface.

(·)T , (·)∗, (·)H , and (·)−1 denote the transpose, conjugate,

conjugate transpose (Hermitian), and inverse, respectively. We

use IK to represent identity matrix of order K. The set of

P ×Q complex-valued matrices and real-valued matrices are

denoted by C
P×Q and R

P×Q, respectively. We use E{·} to

represent expectation. The l2-norm of a vector and Frobenius

norm of a matrix are denoted by ‖ ·‖2 and ‖ ·‖F , respectively.

We use a[p] to denote the pth entry of a. Complex Gaussian

distribution is denoted by CN . We use | · | to denote the

absolute value.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We first introduce the system model of multi-user mmWave

massive MIMO. Then the channel estimation problem is



Fig. 1. Block diagram of downlink transmission in the multi-user mmWave
massive MIMO system.

formulated as a CS problem to estimate the sparse channel

in the beamspace.

A. System Model

We consider a downlink multi-user mmWave massive MI-

MO communication system that comprises a base station (BS)

and U users with single antenna, as shown in Fig. 1. The BS is

equipped with a uniform linear array (ULA) [1]. Let NA and

NR denote the numbers of antennas and RF chains at the BS,

respectively. Hybrid precoding is typically adopted, where the

number of antennas is much larger than that of RF chains, i.e.,

NA � NR [2]. We consider the orthogonal multiple access,

where the number of active users simultaneously connected

with the BS is no larger than that of the RF chains, i.e.,

U ≤ NR [7]. If U < NR, the BS will only turn on U
RF chains to serve the U users simultaneously and turn off

(NR−U) RF chains, which will save the power consumed at

the BS.

For downlink transmission, the BS performs hybrid pre-

coding, which consists of baseband digital precoding and RF

analog precoding [8]. The received signal of all U users,

denoted by ydl ∈ C
U can be represented as

ydl = HFRFBs+ n (1)

where FR ∈ C
NA×U and FB ∈ C

U×U denote the analog

precoder and digital precoder, respectively. To normalize the

power of the hybrid precoder, we set ‖FRFB‖2F = U . We

denote the signal vector by s ∈ C
U satisfying E{ssH} = IU

and additive white Gaussian noise (AWGN) vector by n ∈ C
U

satisfying n ∼ CN (0, σ2IU ). The channel matrix for the BS

and all users is denoted by

H � [h1, ...,hU ]
T ∈ C

U×NA . (2)

Assuming the widely adopted Saleh-Valenzuela mmWave

channel model [2], the channel vector hu ∈ C
NA for the BS

and the uth user is represented as

hu =

√
NA

Lu

Lu∑
i=1

hu,i =

√
NA

Lu

Lu∑
i=1

gu,iα(NA, θu,i) (3)

where the channel vector, number of multi channel paths, and

complex gain of the ith path are denoted by hu,i, Lu, and

gu,i, respectively. Typically hu consists of one line-of-sight

(LOS) path (the 1st channel path), and Lu − 1 non-line-of-

sight (NLOS) paths (the ith channel path for 2 ≤ i ≤ Lu).
The steering vector α(N, θ) can be expressed as

α(N, θ) =
1√
N

[
1, ejπθ, ..., ejπθ(N−1)

]T
. (4)

Denote the angle of arrival (AoA) for the ith path of the uth

user by ϑu,i, which is uniformly distributed over [−π, π) [9].

Then we have θu,i � sinϑu,i if the distance between adjacent

two antennas at the BS is half-wave length [3].

B. Problem Formulation

In order to design FB and FR for downlink data trans-

mission, H should be well estimated. Based on channel

reciprocity, the estimate of downlink channel can be obtained

by employing uplink channel estimation to estimate H . Note

that the proposed DLCS channel estimation scheme can be

used for the downlink channel estimation as well. In this

work, we focus on the uplink channel estimation, since the

BS usually having more computing power than each user is

better to perform the NN training and prediction than the

users. For uplink channel estimation, mutually orthogonal pilot

sequences are transmitted by all users to distinguish different

signals from different users for K times. Each pilot sequence

is with length of U . Denote the pilot matrix consisted of

the U mutually orthogonal pilot sequences from U users

by P ∈ C
U×U . For the uplink pilot transmission, we use

K different analog precoding matrices and digital precoding

matrices, denoted by F k
R ∈ C

NA×NR and F k
B ∈ C

NR×NR ,

respectively, for k = 1, 2, . . . ,K. The pilot sequences received

at the BS for the kth sending are given by

Y ul
k = (F k

RF
k
B)

THTP + (F k
RF

k
B)

TNk (5)

where the AWGN matrix for the kth transmission is denoted

by Nk. Each entry of Nk obeys CN (0, σ2). Based on the

orthogonality of U mutually orthogonal pilot sequences, i.e.,

PPH = IU , we multiply Y ul
k by PH and obtain

Rk � Y ul
k PH = (F k)THT + Ñk (6)

where

F k � F k
RF

k
B ∈ C

NA×NR ,

Ñk � (F k
RF

k
B)

TNkP
H ∈ C

NR×U . (7)

After each user repeatedly transmits orthogonal pilot se-

quences for K times, Rk for k = 1, 2, . . . ,K can be stacked

as

R = [RT
1 , . . . ,R

T
K ]T = F THT + Ñ (8)

where

F � [F 1, . . . ,FK ] ∈ C
NA×NRK ,

Ñ � [Ñ
T

1 , . . . , Ñ
T

K ]T ∈ C
NRK×U . (9)



Fig. 2. Block diagram of the DLCS channel estimation scheme: offline training and online deployment.

Denote the uth column of R by ru for u = 1, 2, . . . , U . Then

ru can be represented as

ru = F Thu + ñu (10)

where ñu is the uth column of Ñ .

Note that the mmWave channels have sparsity feature in the

beamspace domain [3], [4], [10]. We define

hb
u = Ahu (11)

as a beamspace channel vector where A ∈ C
G×NA is the

dictionary matrix consisted of G column vectors α(NA, φt),
with φt � −1 + 2(t− 1)/G representing the tth point of the

angle grid. Note that the range of AoAs is quantified into G
grids for t = 1, 2, . . . , G. Based on the fact that AHA =
GINA

/NA, equation (11) can be further rewritten as

ru =
NA

G
F TAHhb

u + ñu. (12)

Due to the sparse property of hb
u, equation (12) is essentially

a sparse recovery problem, which can be tackled by CS

techniques. Note that the sparsity of hb
u can be impaired

by channel power leakage caused by the limited beamspace

resolution of A [11], which indicates that hb
u is not perfectly

sparse and many entries of hb
u are small but nonzero. CS

channel estimation schemes such as OMP and DGMP estimate

the dominant beamspace channel entries in a sequential and

greedy manner. However, they cannot guarantee the global op-

timality. Therefore, in the following we will propose a DLCS

channel estimation scheme to estimate dominant beamspace

channel entries simultaneously.

III. DLCS CHANNEL ESTIMATION

The proposed DLCS channel estimation scheme consists

of beamspace channel amplitude estimation and channel re-

construction. The main idea of the DLCS scheme is to first

estimate the beamspace channel amplitude using an offline-

trained NN, and then sort the estimated beamspace channel

amplitude in descending order to select the indices of domi-

nant entries, and finally reconstruct the channel according to

the selected indices. The block diagram of the DLCS scheme

Algorithm 1 DLCS Channel Estimation

1: Input: Φ, ru, J .

2: Initialization: ĥ
b

u ← 0G.

3: (Beamspace Channel Amplitude Estimation)
4: Obtain cu via (14).

5: Input cu to the offline-trained NN to get ĝu.

6: (Channel Reconstruction)
7: Obtain Γ based on J dominant entries of ĝu.

8: Compute ĥ
b

u[Γ] via (17).

9: Obtain ĥu according to (18).

10: Output: ĥu.

is illustrated in Fig. 2. The detailed steps of the DLCS scheme

is summarized in Algorithm 1.

A. Beamspace Channel Amplitude Estimation

We define

Φ � NA

G
F TAH ∈ C

NRK×G (13)

as the measurement matrix in (12). As shown in Algorithm 1,

we input Φ and ru to output the estimate of hu, denoted as

ĥu, for u = 1, 2, . . . , U . The correlation vector between Φ
and ru, denoted as cu ∈ C

G, can be expressed as

cu = ΦHru. (14)

The CS channel estimation schemes sequentially select the

atoms, i.e., column vectors of Φ, which yield the greatest

correlation with ru. However, such greedy algorithms cannot

guarantee the global optimality, which motivates us to use

the NN to estimate the atoms simultaneously instead of

sequentially.

As shown in Fig. 2, the beamspace channel amplitude esti-

mation has two stages, including the offline training of the NN

and online deployment of it. The NN is first trained offline and

then used as the kernel of the beamspace channel amplitude



estimation. The input of the NN is cu. The amplitude of hb
u

can be denoted by

gu �
[∣∣∣hb

u[1]
∣∣∣ , ∣∣∣hb

u[2]
∣∣∣ , . . . , ∣∣∣hb

u[G]
∣∣∣]T ∈ R

G. (15)

The output of the NN is denoted by ĝu and is expected to be

gu.

As illustrated in Fig. 3, the adopted NN in this work consists

of three hidden layers and a fully connected (FC) layer. Since

the NN can only deal with the real number, the input of the

NN is a real-valued vector with length of 2G composed by the

imaginary and real parts of cu. Each hidden layer includes an

FC layer and a batch normalization (BN) layer. The numbers

of neurons in these three hidden layers are set as 1,024, 512,

and 256. The activation function adopted in the FC layer is

the ReLU function, which can be represented as fRe(x) =
max(0, x).

During the offline training of the NN, we generate the

dataset of cu and gu based on the simulated mmWave channel

environment. With the beamspace channel amplitude in (15)

and the correlation of the received signals and the measure-

ment matrix in (14), the training data of cu and gu can be

obtained. In fact, the process to obtain cu and gu involves

the following four steps. i) We randomly generate a channel

vector based on the mmWave channel model in (3). ii) We

obtain gu based on (15). iii) We compute the received signal

vector ru based on (10). iv) We figure out the correlation

vector cu based on (14). The output of the NN is ĝu.

The training of the NN aims to minimize the difference

between ĝu and gu. The difference typically named as the

loss in machine learning, can be calculated in several ways.

In our work, we calculate the loss by measuring the mean

square error as

fLoss(gu, ĝu) =
1

G

G∑
n=1

(gu[n]− ĝu[n])
2
. (16)

We adopt the adaptive moment estimation (Adam) optimizer

to train the NN by TensorFlow [12]. The NN is trained for

1,000 epochs, where 50 mini-batches are utilized in each

epoch. The learning rate is set to be a step function, which

decreases with the increasing of training epochs. The learning

rate is initialized with the value of 0.01 and decreases 5-fold

every 400 epochs.

During the online deployment of the NN, we obtain the real

measured ru from practical mmWave channel environments.

We compute cu based on (14), which is then input to the

offline-trained NN. The prediction of gu by the NN is ĝu.

B. Channel Reconstruction

Note that the sparsity of hb
u can be impaired by channel

power leakage caused by the limited beamspace resolution of

A [11], which indicates that hb
u is not perfectly sparse and

many entries of hb
u are small but nonzero. Denote the number

of dominant entries of gu by J , which is the beamspace

channel sparse level. In the online deployment stage, we sort

ĝu in descending order according to the absolute value of ĝu.

Fig. 3. Illustration of the NN.

Then we obtain the indices of the first J entries, which are

the prediction of the indices of J dominant entries in gu.

We denote the prediction of these J indices by Γ ∈ R
J . We

further let ĥ
b

u denote an estimate of hb
u. We initialize ĥ

b

u to

be zero. Then the J dominant entries of ĥ
b

u can be computed

via the least squares (LS) estimation as

ĥ
b

u[Γ] = (ΦH
Γ ΦΓ)

−1ΦH
Γ ru (17)

where ΦΓ consists of J columns of Φ and the column indices

are denoted by Γ. Then using the result AHA = GINA
/NA,

the estimated channel vector for the uth user can be obtained

based on (11) as

ĥu =
NA

G
AH ĥ

b

u. (18)

It is shown that the proposed DLCS channel estimation

scheme can avoid greedy manner that is commonly adopted

by the existing channel estimation schemes based on CS, since

the DLCS scheme estimates dominant entries simultaneously

instead of sequentially.

IV. SIMULATION RESULTS

In the following we will present the performance evaluation

for the proposed DLCS channel estimation scheme. Consid-

ering a multi-user mmWave massive MIMO communication

system, the BS equipped with NR = 4 RF chains and

NA = 64 antennas serves U = 3 users with single antenna.

We set G = 128 according to [4], and we set the number of

multi paths in mmWave channel as Lu = 2, where gu,1 ∼

CN (0, 1) and gu,2 ∼ CN (0, 0.5) [4], [9]. For the uplink

pilot transmission, we set F k
B = INR

. Each entry of F k
R

is randomly drawn from the set {ej2πn/2Q , n = 1, 2, . . . , 2Q},

where the quantization bit number of the phase shifters used

at the BS is Q = 4 [4]. Since hb
u is not ideally sparse due

to the power leakage, the beamspace channel sparse level

should be larger than Lu, i.e., J > 2. We set J = 6, 7 in

performance simulating. Note that the NN is trained to predict

the beamspace channel amplitude, where the training process

of the NN is independent of J . The proposed DLCS channel

estimation scheme is compared with the existing OMP [5]

and DGMP [3] channel estimation schemes.

As shown in Fig. 4, the channel estimation performance

for the proposed DLCS scheme together with the existing

schemes is compared in terms of SNR. The channel estimation
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Fig. 4. Comparisons of channel estimation performance in terms of SNR
for different schemes.

performance is measured by the normalized mean-squared

error (NMSE), which can be denoted by

NMSE �
∑U

u=1 ‖ĥu − hu‖22∑U
u=1 ‖hu‖22

. (19)

We use K = 8 time slots to transmit pilots for uplink

channel estimation. To make a fair comparison, we fix the pilot

training time slots to be 8 for the OMP and DGMP schemes,

respectively. It is shown that the DLCS scheme has better

channel estimation performance than existing schemes. When

SNR = 10 dB, the DLCS scheme with J = 6 has 51.7% and

65.8% performance improvements over the OMP and DGMP

schemes, respectively, while the DLCS scheme with J = 7 has

51.3% and 65.5% performance improvements over the OMP

and DGMP schemes, respectively. We explain the reason for

the performance gap as follows. The OMP scheme estimates

the beamspace channel dominant entries sequentially, which

cannot guarantee global optimality. The DGMP scheme only

estimates the LOS path, while our proposed DLCS scheme can

simultaneously estimate all the dominant beamspace channel

entries.

Fig. 5 makes a comparison of the spectral efficiency for the

proposed DLCS scheme together with the existing schemes

in terms of SNR. Based on the estimated channel, there are

various methods to design the hybrid precoding for mmWave

downlink transmission. Similar to [4], in this work we

wish to compare the upper bound of the downlink spectral

efficiency, which can be simply measured by the fully-digital

precoding. We denote the estimated channel matrix for the

BS and all users by Ĥ �
[
ĥ1, ..., ĥU

]T
∈ C

U×NA . The

zero-forcing (ZF) precoding matrix can be represented by

F dl � (Ĥ
∗
Ĥ

T
)−1Ĥ

∗
. In order to meet the total power

budget, the uth row of F dl, denoted by fdl
u , should be

normalized, i.e., fdl
u ← fdl

u /‖fdl
u ‖2 such that ‖fdl

u ‖2 = 1
for u = 1, 2, . . . , U . We further denote the effective channel
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matrix by Heff � F dlĤ
T

. Then the spectral efficiency can

be denoted by [4]

R �
U∑

u=1

log2

(
1 +

SNR

U
λu(Heff)

2

)
(20)

where λu(Heff) denotes the uth eigenvalue of Heff for u =
1, 2, . . . , U .

It is seen from Fig. 5 that the DLCS scheme has better

channel estimation performance than existing schemes. When

SNR = 10 dB, the DLCS scheme with J = 6 has 2.5% and

7.8% performance improvements over the OMP and DGMP

schemes, respectively, while the DLCS scheme with J = 7
has 2.6% and 8.3% performance improvements over the OMP

and DGMP schemes, respectively.

In Fig. 6, the channel estimation performance for the DLCS,

OMP, and DGMP schemes is compared in terms of the
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number of time slots for channel training. We use the same

number of pilot training time slots for the DLCS, OMP, and

DGMP schemes. SNR is fixed as 15 dB. From Fig. 6, it is

shown that the DLCS scheme has the best channel estimation

performance. When fixing the number of pilot training time

slots to be K = 7, the DLCS scheme with J = 6 has

56.1% and 85.2% performance improvements over the OMP

and DGMP schemes, respectively, while the DLCS scheme

with J = 7 has 56.0% and 84.3% performance improvements

over the OMP and DGMP schemes, respectively.

Fig. 7 compares the spectral efficiency for different schemes

in the aspect of the number of time slots for channel training.

The system parameters for performance simulation are set to

be the same as those for Fig. 6. It is shown that the DLCS

scheme can have better channel estimation performance than

the OMP and DGMP schemes. When the number of channel

training time slots is more than 8, the spectral efficiency of

the DLCS scheme remains constant, indicating that K = 8 is

sufficient to obtain the full channel state information.

V. CONCLUSIONS

We proposed a DLCS channel estimation scheme for the

multi-user mmWave massive MIMO communication systems.

The proposed scheme was compared with the existing schemes

in the aspect of NMSE and spectral efficiency. Simulation

results showed that the proposed scheme has better channel

estimation performance than existing schemes. As the future

work, it is worth developing the hybrid precoding design for

multi-user mmWave massive MIMO transmission considering

the limited quantization bits of the phase shifters.
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