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ABSTRACT

Due to multipath delay spread and relatively high sampling

rate in OFDM systems, the channel estimation is formulated

as a sparse recovery problem, where a hybrid compressed

sensing algorithm as subspace orthogonal matching pursuit

(SOMP) is proposed. SOMP first identifies the channel spar-

sity and then iteratively refines the sparse recovery result,

which essentially combines the advantages of orthogonal

matching pursuit (OMP) and subspace pursuit (SP). Since

SOMP still belongs to greedy algorithms, its computational

complexity is in the same order as OMP. With frequency

orthogonal random pilot placement, the technique is also ex-

tend to MIMO OFDM systems. Simulation results based on

3GPP spatial channel model (SCM) demonstrate that SOMP

performs better than OMP, SP and interpolated least square

(LS) in terms of normalized mean square error (NMSE).

Index Terms— compressed sensing, MIMO, OFDM,

channel estimation

1. INTRODUCTION

In traditional least square (LS) OFDM channel estimation,

we must acquire channel frequency response at pilot posi-

tions and then use these observations to interpolate the rest

of the subcarriers. Generally, accurate channel estimation re-

quires more pilots than unknown channel coefficients. When

the channel has large delay spread and contains abundant mul-

tipaths, the pilot number raises rapidly. For MIMO, the over-

head of pilot symbols becomes considerable as transmit an-

tennas increase. Therefore, one possible solution is to assume

the channel sparsity as a priori. Wireless channels in prac-

tice are typically sparse. Channel impulse response usually

presents to be a large number of taps with very few of them

nonzero. With sparse recovery algorithms, the number of pi-

lots can be substantially reduced. Some published work has

already shown progress in this field [1, 2]. Matching pur-

suit (MP) [3] and orthogonal matching pursuit (OMP) [4] are

commonly employed, which sequentially identifies a small

subset of nonzero taps. Although the algorithms are subop-

timal and greedy in nature, they are efficient in terms of per-

formance and complexity. They have been proved to be more

accurate than LS approach.

In this paper, we formulate OFDM frequency domain

channel estimation as a sparse recovery problem and ap-

ply MP, OMP, and subspace pursuit (SP) algorithms. After

that, we propose a hybrid compressed sensing algorithm as

subspace orthogonal matching pursuit (SOMP) combining

the advantages of OMP and SP. Random pilot placement is

adopted according to restricted isometry property (RIP) [5].

With frequency orthogonal pilot placement, we extend our

work to MIMO OFDM. 3GPP spatial channel model (SCM)

[6] is applied in our simulations.

The remainder of the paper is organized as follows. Sec-

tion 2 establishes the system model and formulates the esti-

mation problem of channel impulse response. Section 3 intro-

duces SOMP. In section 4, we make simulations with 3GPP

SCM. And finally section 5 concludes the paper.

2. SYSTEM MODEL

We consider a multipath environment with S clusters or scat-

ters. The channel impulse response between the i-th transmit-

ter and the j-th receiver is modeled as

h ji(τ, t) =
S∑

p=1

α
ji
p (t)δ(τ − τp(t)) (1)

where α
ji
p (t) ∈ C and τp(t) ∈ R+ are complex-valued mag-

nitude and real-valued delay spread for path p, respectively.

With block-fading channel assumption where the channel pa-

rameters are constant over each block and assuming perfect

symbol synchronization, the equivalent discrete impulse re-

sponse of the channel can be modeled as

h ji(m) =

S∑

p=1

α
ji
p δ((m − τp)Ts) (2)

where Ts is the sampling interval of the system. We notice

that in high data rate communication systems where Ts is very

small compared to the maximum delay spread, (2) results in
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a channel with relatively few nonzero taps. Assuming total

channel taps to be L and S of them nonzero (S � L), we call

it S -sparse channel.

Considering an OFDM system with N subcarriers, among

which Np subcarriers are selected as pilots with positions rep-

resented by k1, k2, . . . , kNp (1 ≤ k1 < k2 < . . . < kNp ≤ N) and

Nd (Nd = N − Np) subcarriers are used for data transfer. We

denote the transmit pilot symbols and the receive pilot sym-

bols as X(k1), X(k2), . . . , X(kNp ) and Y(k1),Y(k2), . . . , Y(kNp ),

respectively. The estimated transfer function on pilot subcar-

riers is

Ĥ(m) =
Y(m)

X(m)
, m = k1, k2, . . . , kNp (3)

Then we make interpolations between each two neighboring

pilot subcarriers and get the full channel transfer function

Ĥ(m) (m = 1, 2, . . . ,N), which approximates discrete fourier

transform (DFT) of the channel impulse response as defined

in (2). In order to make use of channel sparsity, we formulate

the problem as

y = X · FNp×L · h + n (4)

where X = diag
{
X(k1), X(k2), · · · , X(kNp )

}
, h = [h(1), h(2), · · · ,

h(L)]T and n = [n(1), n(2), · · · , n(Np)]T are the diagonal ma-

trix, the channel impulse response, and the noise vector

with each element to be an AWGN variable, respectively.

y = [Y(k1),Y(k2), · · · ,Y(kNp )]T and

FNp×L =
1√
N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ωk1 · · · ωk1·(L−1)

1 ωk2 · · · ωk2·(L−1)

...
...

. . .
...

1 ωkNp · · · ωkNp ·(L−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where ω = e− j2π/N . Actually FNp×L is a submatrix selected by

row index [k1, k2, · · · , kNp ] and column index [0, 1, · · · , L − 1]

from a standard N ×N Fourier matrix. We can further assume

A = X · FNp×L and get

y = A · h + n (5)

It’s observed that the purpose of channel estimation is to ob-

tain h from y and A. If rows of A is more than its columns

(Np > L), equation(5) is a standard LS problem with its solu-

tion

ĥLS = (AH A)−1 AH · y (6)

Obviously, we are more interested in the case when the pilots

are less than the channel coefficients (Np < L). It’s signif-

icantly appealing in reducing pilots and thus improving the

spectral efficiency. Theoretically, there’s feasible solution for

sparse recovery problem [5] if most elements of vector h are

zero (S � L).

Since MIMO OFDM channel estimation can be decom-

posed into simultaneously estimating of several SISO OFDM

channels where we employ frequency orthogonal pilot place-

ment for different transmitters, we will mainly focus on sparse

recovery algorithms for each SISO OFDM channel in the fol-

lowing section.

3. COMPRESSED SENSING ALGORITHMS

A collection of sparse recovery algorithms has recently

emerged with the name compressed sensing [7, 8], which

enables efficient reconstruction of sparse signals from rela-

tively few linear measurements. A S -sparse vector h ∈ RL

can be recovered from equation (5) with deliberately designed

A ∈ RNp×L by solving �0-norm minimization problem

min
h∈RL
‖h‖0 s.t. ‖y − A · h‖2 ≤ σ (7)

where ‖h‖0 counts the number of nonzero components of h
and S ≤ Np ≤ L. σ is the variance of noise n. This problem is

combinatorial and NP hard. However, Candes, Tao, Donoho,

Tropp and their colleagues have shown that it can be replaced

by a convex optimization problem [7, 9]

min
h∈RL
‖h‖1 s.t. ‖y − A · h‖2 ≤ σ (8)

Methods for solving above and closely related problems can

be roughly divided into two classes, including greedy algo-

rithms and convex optimization algorithms [10]. Here we

mainly focus on greedy algorithms due to its low complexity.

In application of time-varying channel where channel estima-

tion is frequently carried out, it’s inappropriate to choose high

computational convex optimization algorithms.

MP is one greedy algorithm that constructs a linear com-

bination of matrix columns closest to the signal [3]. Although

MP can rapidly find an approximation with asymptotic con-

vergence, its shortcoming lies in the fact that it may select

the same columns several times which lowers the efficiency.

Hence, OMP has been proposed as a revised MP by only us-

ing residue’s orthogonal component for the next iteration [4].

Only the component that is orthogonal with the space spanned

by the previous selected columns is preserved. The short-

coming of OMP lies in its unidirectional adding new columns

without removing out-dated columns. When a selection error

occurs, the iteration will continue to the end without correct-

ing them adaptively.

The idea of SP is to iteratively refine S columns selection

from the dictionary matrix through LS method until the stop

condition is satisfied [11]. At each step, it selects S columns

rather than only one column as in MP and OMP. The subspace

spanned by S columns is thus tracked down. The weak point

of SP is that we should know S before the start of the algo-

rithm. So it’s necessary to extend SP to the occasion where

the sparsity is unknown.

The stop condition for OMP employs the threshold that

equals to the noise variance, while the counterpart for SP

only relies on previous iterative result. Apparently the lat-

ter is more appealing since it can iteratively refine the result.

Besides, SP allows the columns to enter into as well as leave

the selection set, which is the chief drawback for OMP. At

each iteration, OMP always greedily selects one column vec-

tor, while SP selects several columns in batch. The possibility
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to correctly find one column with one selection is much lower

than with batch selection. As a result, we combine their ad-

vantages and propose a hybrid compressed sensing algorithm

as SOMP.

Definition: If matrix M satisfies that MH M is invertible,

we define the orthogonal part of y on M to be

orthg(y,M) � y − MM†y (9)

where

M† = (MH M)−1 MH (10)

is the pseudo inverse of M.

Algorithm 1 SOMP

Input: A, y, σ

1. Normalize columns of A:

Normalize each column of matrix A with a coefficient

diagonal matrix C so that A = D · C
2. Identify the sparsity:

Initialization:

r1 = y, I1 = ∅, Ic
1 = {1, . . . , L}

Iteration: k = 1, 2, . . .

mk = arg maxi∈Ic
k
| < D(i), rk > |

uk = D(mk) −∑i∈Ik
< D(mk),ui >

ui
‖ui‖22

rk =< rk,uk >
uk
‖uk‖22
+ rk+1

if ‖rk+1‖2 ≤ σ, break

Ik+1 = {Ik,mk}, Ic
k+1
= Ic

k\{mk}
Store Ik+1 in Î

3. Get the sparse solution:

Initialization:

S = ‖Î‖0, d1 = orthg(y, D(Î))

Iteration: k = 1, 2, . . .

If dk = 0, break

z = DH dk

Ip =
{
(l1, . . . , lS ) : |z(l1)| ≥ · · · ≥ |z(lS )| ≥ · · · ≥ |z(lL)|

}

I′ = Î
⋃

Ip, w = D†(I′)y
Iq =
{
(l1, . . . , lS ) : |w(l1)| ≥ · · · ≥ |w(lS )| ≥ · · · ≥ |w(lL)|

}

dk+1 = orthg(y, D(Iq))

If ‖dk+1‖2 > ‖dk‖2, break

Î = Iq

Store x: x(Î) = D†(Î)y, x(Îc) = 0
4. Output:

ĥsomp = C−1 x

We describe the SOMP algorithm as follows. First we

normalize each columns of A and get a coefficient diagonal

matrix C. Then we start to identify the sparsity of the solution.

Index set I1 indicating current selected columns is initialized

to be empty while its complementary set Ic
1

is {1, 2, . . . , L}.
Current residue r1 is initialize to be y. At k-th iterative step,

we select a column index mk from Ic
k so that D(mk) has the

largest inner product with current residue rk. Gram-Schmidt

orthogonalization is implemented on D(mk) to remove the

component inside the column space spanned by Ik. {uk} is

an iteratively generated set which can be regarded as unnor-

malized base vectors for the space spanned by Ik. Then we

update rk by projecting it on this space. If the stop condition

‖rk+1‖2 ≤ σ is satisfied, we break the iteration and store Ik+1 in

Î. Otherwise we update Ik+1 by adding mk into Ik; meanwhile

its complementary set Ic
k+1

is also updated. After that, we en-

ter into the stage for sparse solution. The identified sparsity S
is initialized to be the size of Î. d1 is initialized as the orthog-

onal part of y on D(Î), where D(Î) is defined as the submatrix

from D with its columns indexed by Î. At k-th iterative step,

we first check whether dk is zero. If so, we break the itera-

tion. Otherwise, we project dk onto D, from which we pick

up S largest components and store their indices in Ip. The

union of Î and Ip is denoted as I′. From D†(I′)y we pick up S
largest components and refine Iq. Let dk+1 denote the orthog-

onal part of y on D(Iq). If ‖dk+1‖2 appears to be greater than

the last step, it means the orthogonal part can’t be smaller. We

break the iteration. Otherwise we update Î by Iq. When out

of iteration, x is yielded with nonzero components indexed

by Î satisfying x(Î) = D†(Î)y and C−1x is output as the final

solution.

In optimization research field [12], it’s common to use two

steps for sparse recovery, with the first to identify the spar-

sity and the second to decide corresponding value [13]. The

difference is that SOMP uses a hybrid greedy algorithm in-

stead of high computational optimization algorithm. In terms

of the computational complexity, OMP is roughly in the or-

der of O(S NpL), which is also the upper bound of SP [11].

Therefore SOMP is in the same order as OMP.

4. SIMULATION RESULTS

In our simulations, we consider a MIMO system with two

transmit and two receive antennas. The channels are gener-

ated using 3GPP SCM [6], where we apply MP, OMP, SP and

SOMP for channel estimation. According to [5], we randomly

place pilots among all OFDM subcarriers so that the matrix A
in (5) satisfies RIP. Meanwhile, with the purpose to simplify

MIMO channel estimation problem, we employ frequency or-

thogonal pilot placement for different transmit antennas. For

example, we place 12 pilots among 256 subcarriers for two

different transmit antennas. First we randomly select 24 po-

sitions from 256 candidates. Then we randomly choose 12

positions from the selected 24-position subset for one trans-

mit antenna. The remaining 12 positions are used for the other

transmit antenna. Consequently pilots for different antennas

are un-overlapped and do not interfere with each other. 2 × 2

MIMO OFDM channel estimation problem is decoupled into

4 SISO ones. Hence we can concentrate on sparse channel

estimation for each SISO OFDM system.

System parameters in our simulations are listed in Table

1. Pilot positions used in simulations are [6, 20, 36, 58, 70,

90, 118, 169, 182, 202, 223, 240]. Performance comparisons

of MP, OMP, SP, SOMP and cubic spline interpolated LS in

terms of normalized mean square error (NMSE) are illustrated

in Figure 1. We define NMSE to be ‖ĥ − h‖2
2/‖h‖22, where ĥ
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Table 1. System parameters

Number of transmitting antennas Nt = 2

Number of receiving antennas Nr = 2

Number of total subcarriers N = 256

Number of pilot subcarriers Np = 12

Number of cyclic prefix NG = 64

Number of channel multipaths S = 5

Length of channel impulse response L = 40

Modulation QPSK

is the estimation of h.
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Fig. 1. NMSE vs SNR with unknown sparsity

It’s observed from Figure 1 that LS cubic spline which

does not take channel sparsity as a prori performs much worse

than sparse recovery algorithms. SOMP has the best perfor-

mance especially for SNR from 15dB to 30dB. In this range,

the noise is unnegligible. It disturbs the correct selection for

OMP due to its one selection manner as we analyzed in Sec-

tion 3. When SNR goes beyond 35dB, OMP can also do the

right thing as SOMP because the noise is much smaller com-

pared to the signal. For SNR lower than 15dB, OMP and

SOMP are approximated because the noise deteriorates both

algorithms. Consequently, SOMP combines the advantages

of OMP to identify the sparsity and SP to refine the best group

selection. It has been demonstrated to be an appropriate can-

didate for low complexity sparse recovery.

5. CONCLUSIONS

This paper studied the sparse recovery algorithms for pilot

assisted MIMO OFDM channel estimation, where SOMP is

proposed and proved to be better than MP, OMP and SP. Fur-

ther work will continue on sparse recovery algorithms. Com-

plexity reduction will be emphasized.
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