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Abstract—Beam refinement is a key technology to overcome
the problem of limited resolution in beam training. However,
most existing works on beam refinement are not suitable for the
emerging extremely large-scale multiple-input-multiple-output
(XL-MIMO) due to the differences in the channel characteristics.
To fill in the gap, in this paper, beam refinement for XL-MIMO
systems is investigated. Inspired by the similarities between the
Taylor series of the Gaussian function and that of the beam
gain, we propose to approximate the beam gain by the Gaussian
function. Then, a low-complexity beam refinement based on the
Gaussian approximation (BRGA) scheme, which quantizes the
narrowed intervals after beam training into several samples
and performs additional channel tests on the quantized grids,
is proposed to improve the estimation accuracy of the beam
training. Based on the measurements in the beam refinement
stage, the BRGA-based least square (BRGA-LS) estimator is
developed for high-resolution channel parameter estimation.
To avoid the noise amplification effects of the BRGA-LS, the
BRGA-based weighted least square (BRGA-WLS) estimator is
further developed. Simulation results verify the effectiveness of
the proposed scheme and show that the proposed BRGA scheme
can greatly improve the accuracy of beam training with only a
few additional channel tests.

Index Terms—Beam training, beam refinement, extremely
large-scale MIMO (XL-MIMO), Gaussian approximation.

I. INTRODUCTION

Terahertz (THz) that reserves wide spectrum resources is a
promising technology for achieving high data rates. Thanks
to its small wavelength, the space-limited base station (BS)
can accommodate a large number of antennas to enhance
the spectral efficiency by implementing the massive multiple-
input-multiple-output (MIMO). The perfect match between
the abundant spectrum resources provided by THz and the
high spectral efficiency enabled by massive MIMO has led to
the boom of THz massive MIMO [1].

Recently, extremely large-scale MIMO (XL-MIMO) with
far more antennas than existing massive MIMO has been
developed to further improve the spectral efficiency via
ultrahigh-gain beamforming [2]. Attracted by the tremendous
potentials, researchers have moved on to develop XL-MIMO
based on the well-explored massive MIMO. However, ex-
tending the works in massive MIMO to XL-MIMO is not
straightforward. To be specific, due to the much larger array
aperture, the channel of the latter differs greatly from that of
the former in terms of propagation characteristics. Generally,

the radiation fields of the electromagnetic waves can be
divided into the near field and the far field according to the
distance between the BS and the radiation source [3], [4].
In the existing massive MIMO, the coverage of the BS is
dominated by the far field, where the electromagnetic wave
is approximated as the planar wave and hence the phase differ-
ences of the antennas can be modeled as the linear function of
the antenna indices. In the emerging XL-MIMO, the near field
takes a significant proportion of the BS coverage, where the
spherical wave is adopted to characterize the electromagnetic
wave propagation and the phase differences of the antennas
are the nonlinear function of the antenna indices.

One pivotal research topic of wireless communications is
the channel state information (CSI) acquisition [5]. In the
context of XL-MIMO, CSI acquisition should take both the
near field and the far field into account. Many interesting
researches have been conducted for the CSI acquisition of
XL-MIMO. In [6], a polar-domain simultaneous orthogonal
matching pursuit (P-SOMP) algorithm is proposed to estimate
the near-field channels by exploiting the polar domain spar-
sity. In [7], a chirp-based hierarchical beam training scheme
is developed for the XL-MIMO. However, the accuracy of
the dictionary-based channel estimation method in [6] and the
beam training methods in [7] is limited by the quantization of
space. To overcome the limited resolution resulting from the
quantization, low-complexity beam refinement is developed.
In [8], an auxiliary beam pair (ABP) is proposed for beam
refinement, which obtains the high-accuracy estimates of
channel angles by comparing the beam gain of the adjacent
codewords. In [9], a virtual-subarray-based beam refinement
scheme is proposed, where the antenna array is virtually
divided into two subarrays, and phase differences of several
measurements are exploited for channel angle estimation.
In [10], a far-field beam refinement (FFBR) method for ana-
log antenna arrays is developed by approximating the array
gain as a Gaussian function. However, the beam refinement
methods in [8]–[10] only adapt to the far-field channels. To
our best knowledge, there have been no published works on
beam refinement for the XL-MIMO considering both the near
field and the far field.

In this paper, beam refinement for XL-MIMO systems with
hybrid precoding structure is investigated. Inspired by the
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similarities between the Taylor series of the Gaussian function
and that of the beam gain, we propose to approximate the
array gain of XL-MIMO with a two-dimensional Gaussian
function. Then, a low-complexity beam refinement based on
the Gaussian approximation (BRGA) scheme is proposed
to improve the estimation accuracy of the beam training,
which quantizes the narrowed intervals after beam training
into several samples and performs additional channel tests on
the quantized grids. Based on the measurements in the beam
refinement stage, the BRGA-based least square (BRGA-LS)
estimator is developed for high-resolution channel parameter
estimation. To avoid the noise amplification effects of the
BRGA-LS, the BRGA-based weighted least square (BRGA-
WLS) estimator is further developed.

The notations are defined as follows. Symbols for matrices
(upper case) and vectors (lower case) are in boldface. (·)T

and (·)H denote the transpose and conjugate transpose (Her-
mitian), respectively. [a]n, [A]:,n and [A]m,n denote the nth
entry of vector a, the nth column of matrix A and the entry
on the mth row and the nth column of matrix A, respectively.
In addition, j, | · |, C, and CN denote the square root of −1,
the absolute value of a scalar, the set of the complex number
and the complex Gaussian distribution.

II. SYSTEM MODEL

As shown in Fig. 1, we consider the uplink beam training
between the BS and the user, where a half-wavelength-
interval array with NBS antennas is equipped at the BS
while a single-antenna transceiver is adopted for the user.
To ease the notation, we assume NBS is an odd number and
NBS = 2N+1. With the hybrid combining structure, the NBS

antennas are connected to NRF RF chains through the phase
shifter network. In this work, the beam training is performed
based on the analog combining, and hence we focus on one of
the multiple RF chains for simplicity. Then the pth received
signal, for p = 1, 2, · · ·P , can be expressed as

yp = wH
p hxp +wH

p η (1)

where wp ∈ CNBS , h ∈ CNBS , and xp denote the analog
combiner at the BS, the channel between the BS and the
user, and the transmit signal, respectively. In addition, η ∼
CN (0, %2

ηINBS) denotes the additive while Gaussian noise.
To depict the channel, we first establish a Cartesian coor-

dinate, which sets the center, the normal direction, and the
tangent direction of the antenna array as the origin, the x-
axis, and the y-axis, respectively. Then the coordinate of the
nth antenna can be expressed as (0, nλ/2) for n ∈ I , where
I , {−N, · · · , 0, · · · , N} and λ denotes the wavelength.
From Fig. 1, the coordinate of the radiation source (the
user or scatterers) at the lth path is (rl cos θl, rl sin θl), for
l = 1, 2, · · · , L, where L denotes the number of paths, rl
denotes the distance between the origin and the lth radiation
source, and θl ∈ [−π/2, π/2] denotes the angle of the lth
radiation source relative to the x-axis. The distance between
the lth radiation source and the nth antenna is calculated as

r
(n)
l =

√
r2
l + n2λ2/4− nrlΘlλ (2)

0

1

-1

2

N

-2

-N 

x-axis

Scatterer

User
y-axis

BS 
Antenna 

Array

Fig. 1. Illustration of the system model.

where Θl , sin θl ∈ [−1, 1]. Then the channel steering vector
between the user and the BS can be expressed as

h =

L∑
l=1

glα(Θl, rl) (3)

where gl denotes the channel gain of the lth path. The channel
steering vector α(·) is defined as

α(Θl, rl)=
1√
NBS

[
e−j

2π
λ (r

(−N)
l −rl),. . ., e−j

2π
λ (r

(N)
l −rl)

]T
.

(4)

III. BEAM REFINEMENT BASED ON GAUSSIAN
APPROXIMATION

In this section, we focus on the beam refinement for XL-
MIMO. First of all, we introduce the codebook design and the
beam training for XL-MIMO. Then, the similarities between
the Taylor series of the Gaussian function and that of the beam
gain are presented. In addition, a BRGA scheme is proposed,
which quantizes the narrowed intervals after beam training
into several samples and performs additional channel tests
on the quantized grids. Based on the measurements in the
beam refinement stage, two estimators including BRGA-LS
and BRGA-WLS are developed for high-resolution channel
parameter estimation.

A. Codebook Design and Beam Training

We omit the subscript “l” of r(n)
l and simplify r(n) as

r(n) ≈ r − nΘλ/2 +
n2λ2(1−Θ2)

8r
(5)

according to
√

1 + ε ≈ 1 + 1
2ε−

1
8ε

2, which is verified to be
accurate if r(n) ≥ 0.5

√
N3λ2 [4], [6]. In fact, the boundary

0.5
√
N3λ2 is quite small compared to the coverage of the BS.

For example, if N = 128 and λ = 0.003 m, 0.5
√
N3λ2 ≈

2.2 m, which is much smaller than the typical coverage of the
BS. Therefore, in this work, we focus on the radiation field
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with r(n) ≥ 0.5
√
N3λ2. Substituting (5) into (4), we have

[α(Θ, r)]n ≈
1√
NBS

e
jπ

(
Θn−λ(1−Θ2)

4r n2

)
(6)

for n ∈ I . Define

k ,
λ(1−Θ2)

4r
. (7)

Then (4) can be approximated as

α(Θ, r)≈ 1√
NBS

[
ejπ(−ΘN−kN2), . . . , ejπ(ΘN−kN2)

]T
, γ(Θ, k). (8)

From (8), the channel steering vector is related to both Θ
and k. To establish a codebook covering the whole space, we
quantize Θ by Q samples and quantize k by S samples. Since
Θ ∈ [−1, 1], the qth sample of Θ is expressed as

ϕq = (2q − 1−Q)/Q (9)

for q = 1, 2, · · · , Q. Note that 0 ≤ k ≤ 1

2
√
N3

because r ≥
0.5
√
N3λ2. Therefore, the sth sample of k is expressed as

ts =
(s− 1)

2
√
N3(S − 1)

(10)

for s = 1, 2, · · ·S. Then the codebook can be established as

C , {C1,C2, · · ·CQ} ∈ CN×QS (11)

where Cq ∈ CN×S and [Cq]:,s = γ(ϕq, ts) for q =
1, 2, · · · , Q and s = 1, 2, · · ·S.

To find the LoS path, the codewords in C need to be tested
one by one [11]. Denote Y ∈ CQ×S as the matrix to keep
the received signals for the beam training. When testing the
sth codeword in Cq , the received signal at the BS can be
expressed as

[Y ]q,s = [Cq]
H
:,sh+ [Cq]

H
:,sη (12)

where we set the transmit symbol as “1”. Then the indices of
the codeword in C best fitting for h are determined by [12]

(q̂, ŝ) = arg max
q,s

|[Y ]q,s|

s.t. q = 1, · · ·Q, s = 1, · · · , S, p = (q − 1)S + s. (13)

B. Gaussian Approximation

For an arbitrary channel steering vector, v = γ(Θ, k), we
define its hybrid-field beam gain as

G(v,Ω, b) , NBSγ(Ω, b)Hv

=

N∑
n=−N

ejπ((Θ−Ω)n−(k−b)n2)

=

N∑
n=−N

ej(Ω̃n−b̃n
2) (14)

where Ω̃ , (Θ − Ω)π and b̃ , (k − b)π. Note that different
from the beam gain of the channel steering vector for massive
MIMO that only relates to the spatial angle, the hybrid-field
beam gain of the channel steering vector for XL-MIMO is

Fig. 2. Illustration of the Gaussian Approximation.

related to both the spatial angle and the distance. Furthermore,
we have

|G(v,Ω, b)|2 =

(
N∑

n=−N
ej(Ω̃n−b̃n

2)

)(
N∑

n=−N
ejπ(Ω̃n−b̃n2)

)∗

=

N∑
n=−N

N∑
m=−N

ej
(

Ω̃(n−m)−b̃(n2−m2)
)

=

N∑
n=−N

N∑
m=−N

cos
(
Ω̃(n−m) + b̃(m2 − n2)

)
.

(15)

Unfortunately, it is hard to obtain the closed-form solution of
(15) due to the quadratic phase term b̃(m2 − n2). To obtain
a deeper scope of |G(v,Ω, b)|2, we resort to the widely-used
Taylor series.

At the top of the next page, we provide the Taylor series of
|G(v,Ω, b)|2 and e−Ω̃2/σ2

1−b̃
2/σ2

2 about the point (0, 0), where
Cp, C̃p, Cp,q , Dp, D̃p, Dp,q are all constant coefficients. In
addition, we omit lower-order terms in (a) of (16) for simplic-
ity. From (16) and (17), the Taylor series of |G(v,Ω, b)|2 and
e−Ω̃2/σ2

1−b̃
2/σ2

2 share similarities in several aspects including
the orders and coefficients of the series. Inspired by the
similarities, we propose to use the two-dimensional Gaussian
function

f(Ω, b) , ae
− (Ω−Θ)2

2σ2
1
− (b−k)2

2σ2
2 . (18)

to approximate the main lobe of |G(v,Ω, b)|, which is the
Gaussian approximation. From (9) and (10), the quantization
intervals of Θ and k are ∆Θ = 2/Q and ∆k = 1

2
√
N3(S−1)

,
respectively. Therefore, the main lobe of |G(v,Ω, b)| is re-
stricted to the region{

(Ω, b)
∣∣Ω∈[Θ−∆Θ

2
,Θ+

∆Θ

2

]
, b∈

[
k−∆k

2
, k+

∆k

2

]}
.

(19)

Then, the Gaussian approximation is formulated as

min
a,σ1,σ2

∫ k+ ∆k
2

k−∆k
2

∫ Θ+ ∆Θ
2

Θ−∆Θ
2

∣∣f(Ω, b)−|G(v,Ω,b)|
∣∣2dΩdb (20)
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|G(v,Ω, b)|2 =

N∑
n=−N

N∑
m=−N

∞∑
p=0

2p−1∑
q=1

(−1)p(n−m)2pΩ̃2p

(2p)!
+

(−1)p(m2−n2)2pb̃2q

(2p)!
+2

(−1)p(n−m)q(m2−n2)2p−qΩ̃q b̃2p−q

(q)!(2p− q)!

(a)
≈
∞∑
p=0

2p−1∑
q=1

(−1)pCpN
2pΩ̃2p

(2p)!
+

(−1)pC̃p(N
2)2pb̃2q

(2p)!
+2

(−1)pCp,qN
4p−q+2Ω̃q b̃2p−q

(q)!(2p− q)!
(16)

e
− Ω̃2

σ2
1
− b̃2

σ2
2 =

∞∑
p=0

p−1∑
q=1

(−1)p
(

2
σ2

1

)p
Ω̃2p

∏p
i=1(2i− 1)

(2p)!
+

(−1)p
(

2
σ2

2

)p
b̃2q
∏p
i=1(2i− 1)

(2p)!

+ 2
(−1)p

(
2
σ2

1

)q( 2
σ2

2

)p−q(∏q
i=1(2i− 1)

)(∏p−q
i=1 (2i− 1)

)
Ω̃2q b̃2p−2q

(2q)!(2p− 2q)!

=

∞∑
p=0

p−1∑
q=1

(−1)pDp

(
σ−1

1

)2p
Ω̃2p

(2p)!
+

(−1)pD̃p

(
σ−1

2

)2p
b̃2q

(2p)!
+2

(−1)pDp,q

(
σ−1

1

)2q (
σ−1

2

)2p−2q
Ω̃2q b̃2p−2q

(2q)!(2p− 2q)!
(17)

which is a nonlinear least-square problem and can be solved
by the trust-region optimization algorithm [13]. We omit the
details and denote the solutions of (20) as â, σ̂1 and σ̂2. Then,
the optimized Gaussian function can be expressed as

f̂(Ω, b) = âe
− (Ω−Θ)2

2σ̂2
1
− (b−k)2

2σ̂2
2 . (21)

Note that for another channel steering vector, v = γ(Θ, k),
we have

G(v,Ω, b) =

N∑
n=−N

ejπ((Θ−Ω)n−(k−b)n2)

=

N∑
n=−N

ejπ((Θ−(Θ−Θ+Ω))n−(k−(k−k+b))n2)

= G(v,Ω + (Θ−Θ), b+ (k − k)) (22)

which indicates that the beam gain of v is the translation of
that of v. Therefore, we only need to solve (20) for v, and
the Gaussian approximation for other channel steering vectors
can be obtained via the translation in (22).

As shown in Fig. 2, we illustrate the main lobe of
|G(v,Ω, b)| and the deviation of the Gaussian approximation,
where we set N = 256, Q = 513, and S = 6. From the
figure, the approximation deviation is quite small compared
to beam gain of the main lobe. For example, the maximum
approximation deviation is only 4% of the maximum beam
gain and the averaged approximation deviation is only 0.5%
of the maximum beam gain.

C. Beam Refinement based on Gaussian Approximation

Note that the estimation accuracy of (13) is limited by
the quantization intervals of Θ and k. A straightforward way
to improve the estimation accuracy is to reduce the quanti-
zation intervals. However, the smaller quantization intervals
will inevitably lead to a larger codebook size, and higher
training overheads are needed to test the codewords in the
enlarged codebook. To improve the estimation accuracy of
beam training results with low overhead, we then propose a

BRGA scheme.
First, we determine the limits of Θ and k based on the beam

training results. From (13), the indices of the beam training
results are q̂ and ŝ, respectively. Therefore, the limits of Θ
and k can be expressed as

Θ =

[
ϕq̂ −

∆Θ

2
, ϕq̂ +

∆Θ

2

]
,

K =

[
tŝ −

∆k

2
, tŝ +

∆k

2

]
. (23)

Then, we further narrow down the limits of Θ and k by
comparing the powers of the received signals adjacent to
[Y ]q̂,ŝ. The narrowed limits of Θ are expressed as

Θ̃ =

{ [
ϕq̂, ϕq̂ + ∆Θ

2

]
, [Y ]q̂+1,ŝ ≥ [Y ]q̂−1,ŝ,[

ϕq̂ − ∆Θ
2 , ϕq̂

]
, [Y ]q̂+1,ŝ < [Y ]q̂−1,ŝ.

(24)

Similarly, the narrowed limits of k can be expressed as

K̃ =

{ [
tŝ, tŝ + ∆k

2

]
, [Y ]q̂,ŝ+1 ≥ [Y ]q̂,ŝ−1,[

tŝ − ∆k
2 , tŝ

]
, [Y ]q̂,ŝ+1 < [Y ]q̂,ŝ−1.

(25)

After that, we quantize the narrowed limits of Θ and k by
M samples. Denote the left and right boundaries of Θ̃ as Θ̃L

and Θ̃R, respectively. Similarly, we have K̃ = [k̃L, k̃R]. Then
the mth sample of Θ and k can be expressed as

Θ̃m = Θ̃L +
(m− 1)(Θ̃R − Θ̃L)

M − 1
,

k̃m = k̃L +
(m− 1)(k̃R − k̃L)

M − 1
. (26)

To perform the beam refinement, the user continues to
transmit pilots. Meanwhile, the BS receives the pilots via
γ(Θ̃m, k̃t) for m = 1, 2, · · · ,M and t = 1, 2, · · · ,M . Then
the received signals at the BS can be expressed as

ỹm,t = γ(Θ̃m, k̃t)
Hh+ γ(Θ̃m, k̃t)

Hη

(a)
≈ gγ(Θ̃m, k̃t)

Hα(Θ1, r1) + η

(b)
≈ gγ(Θ̃m, k̃t)

Hγ(Θ, k) + η (27)
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where we omit the NLoS channels in (a), omit the subscript
“1” and approximate α(Θ, r) with γ(Θ, k) in (b). In (27),
η , γ(Θ̃m, k̃t)

Hη denotes the noise term. In addition, we
specify that all the variants of η denote the noise terms in the
following text.

Applying the Gaussian approximation to (27), we have

|ỹm,t| ≈ |g̃|f̂(Θ̃m, k̃t) + η̃

= |g̃|âe
− (Θ̃m−Θ)2

2σ̂2
1
− (k̃t−k)2

2σ̂2
2 + η̃ (28)

where g̃ = g/NBS. Note that the Gaussian function is
the exponential of a quadratic function. Taking the natural
logarithm of |ỹm,t|, we have

ln |ỹm,t| = ln(|g̃|â)− (Θ̃m −Θ)2

2σ̂2
1

− (k̃t − k)2

2σ̂2
2

+ η. (29)

In (29), we establish a quadratic function about the channel
parameters Θ and k. We then develop two estimators termed
as BRGA-LS and BRGA-WLS to obtain the high-resolution
estimates of Θ and k based on (29).

1) BRGA-LS: To remove the constant and quadratic terms,
we subtract ln |ỹ1,1| from ln |ỹm,t| and obtain

ln |ỹm,t|−ln |ỹ1,1| =
(Θ̃m−Θ̃1)

σ̂2
1

Θ +
(k̃t−k̃1)

σ̂2
2

k + η. (30)

We rewrite (30) in a more compact form as

ALSzLS + η = yLS (31)

where zLS , [Θ, k]T and η is the stack of noise terms. The
uth row of ALS and the uth entry of yLS are expressed as

[ALS]u,: =

[
(Θ̃m−Θ̃1)

σ̂2
1

,
(k̃t−k̃1)

σ̂2
2

]
[yLS]u=ln |ỹm,t|−ln |ỹ1,1| (32)

for u = (m − 1)M + t, m = 1, 2, · · · ,M , t = 1, 2, · · · ,M
and m + t 6= 2. The least-square solution of (31) can be
expressed as

ẑLS = (AT
LSALS)−1AT

LSyLS. (33)

Then the estimation of Θ and k can be expressed as

Θ̂LS = [ẑLS]1, k̂LS = [ẑLS]2. (34)

From (7), the estimation of r can be expressed as

r̂LS =
λ(1− Θ̂2

LS)

4k̂LS

. (35)

2) BRGA-WLS: From (28), we have

ln |ỹm,t| ≈ ln(|g̃|f̂(Θ̃m, k̃t)) + ln

(
1 +

η̃

|g̃|f̂(Θ̃m, k̃t)

)
(a)
≈ ln(|g̃|f̂(Θ̃m, k̃t)) +

η̃

|g̃|f̂(Θ̃m, k̃t)
(36)

where (a) holds because ln(1 + ε) ≈ ε. The relations in (36)
indicate that the noise term will be magnified by 1

|g̃|f̂(Θ̃m,k̃t)
times. Therefore, large errors will be introduced for small
values of f̂(Θ̃m, k̃t). To avoid the noise amplification effects,

Algorithm 1 Beam Refinement based on Gaussian Approxi-
mation (BRGA) Scheme

1: Input: N , NBS, Q, S, M , q̂, ŝ, â, σ̂1 and σ̂2.
2: Obtain Θ̃ and K̃ via (24) and (25).
3: Obtain Θ̃m and k̃m for m = 1, 2, · · · ,M via (26).
4: Obtain ỹm,t via (27).
5: Obtain Θ̂LS and r̂LS via (34) and (35), respectively.
6: Obtain Θ̂WLS and r̂WLS similar to (34) and (35).
7: Output: Θ̂LS, r̂LS, Θ̂WLS and r̂WLS.

we multiply (36) by |ỹm,t| [14], and obtain

γm,t = |ỹm,t|α+
|ỹm,t|Θ̃m

σ̂2
1

Θ +
|ỹm,t|k̃t
σ̂2

2

k + η̂ (37)

where

γm,t = |ỹm,t| ln |ỹm,t|+
|ỹm,t|Θ̃2

m

2σ̂2
1

+
|ỹm,t|k̃2

t

2σ̂2
2

α = ln(|g̃|â)− Θ2

2σ2
1

− k2

2σ2
2

. (38)

Note that (37) is a linear equation of Θ and k. Similar to
the procedures from (31) to (34), we can also obtain the
estimation of Θ and k via the LS method. We omit the details
and denote the estimation results as Θ̂WLS and k̂WLS. Then
we can obtain r̂WLS similar to (35).

Finally, we summarize the details of the proposed BRGA
scheme in Algorithm 1.

Now, we evaluate the training overhead of the proposed
BRGA scheme. As both Θ̃ and K̃ are quantized by M
samples in (26), M2 times of beam training are needed to
obtain ỹm,t in (27). Therefore, the training overhead of the
proposed BRGA scheme is M2.

IV. SIMULATION RESULTS

Now we evaluate the performance of the proposed scheme.
We consider an XL-MIMO system including a BS equipped
with NBS = 513 antennas and a single-antenna user. We
set the wavelength as λ = 0.003 m corresponding to the
carrier frequency of 100 GHz. The channel between the BS
and the user is composed of one LoS path and two NLoS
paths, where the channel gain of the LoS path obeys g1 ∼
CN (0, 1) and that of the NLoS paths obeys gl ∼ CN (0, 0.01)
for l ∈ {2, 3}. The channel angles distribute uniformly within
[−
√

3/2,
√

3/2], and the distance between the BS and the
user distributes uniformly within [10, 30] m. In addition, we
set Q = 513 and S = 6 for the design of the codebook C.

In Fig. 3, we compare the proposed BRGA scheme with
the beam training only (BTO), ABP [8], and FFBR [10] in
terms of the positioning error. We set M = 2 for the beam
refinement, which corresponds to four times of additional
channel tests. The deviation between the real position and the
estimated position is denoted as E. From the figure, the BTO
method performs the worst among all the methods. This is
because the positioning results of the BTO are limited by the
quantization deviation of the codebook. In addition, the ABP
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Fig. 3. Comparisons of the positioning error for different methods.

and FFBR have similar performance and slightly outperform
the BTO benefiting from the refinement of the channel angles.
Moreover, the proposed BRGA-LS and BRGA-WLS perform
much better than the other methods due to the refinement
of both the distance and channel angles, which validates
the accuracy of the Gaussian approximation and verifies
the effectiveness of the proposed BRGA scheme. It is also
worth noting that the BRGA-WLS achieves better positioning
accuracy than the BRGA-LS thanks to the elimination of the
noise amplification effects.

In Fig. 4, we compare the proposed BRGA scheme with the
BTO, ABP [8], and FFBR [10] in terms of the beamforming
gain. The performances of the methods are consistent with
those in Fig. 3 except that BRGA-LS and BRGA-WLS have
similar performances while ABP and FFBR have different
performances. This is because the positioning performance
of BRGA-LS is accurate enough, and continuing to improve
the positioning accuracy has little effect on the beamforming
gain. On the other hand, the positioning performances of the
ABP and FFBR are not accurate enough due to the lack of
refinement for the distance, and the improvement of FFBR
on ABP cannot be reflected in the positioning performance.
In addition, both the BRGA-LS and the BRGA-WLS can
approach the upper bound when SNR is larger than 0 dB,
which verifies again the effectiveness of the BRGA scheme.

V. CONCLUSION

In this paper, we have investigated beam refinement for
XL-MIMO. The BRGA scheme has been proposed and
two estimators including BRGA-LS and BRGA-WLS have
been developed to obtain high-accuracy channel parameter
estimation. Simulation results have verified the effectiveness
of the proposed scheme. Future work will be continued with
the focus on effective beam training for XL-MIMO.
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