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Abstract—We investigate hybrid beamforming design for
covert multiple-input multiple-output communications with
finite-resolution digital-to-analog converters (DACs), which im-
pose practical hardware constraints not yet considered by the
existing works and have negative impact on the covertness.
Based on the additive quantization noise model, we derive the
detection error probability of the warden considering finite-
resolution DACs. Aiming at maximizing the sum covert rate
(SCR) between the transmitter and legitimate users, we design
hybrid beamformers subject to the power and covertness con-
straints. To solve this nonconvex joint optimization problem,
we propose an alternating optimization (AO) scheme based on
fractional programming, quadratic transformation, and inner
majorization-minimization methods to iteratively optimize the
analog and digital beamformers. Simulation results verify the
performance gain provided by the proposed AO scheme.

Index Terms—Covert communications, digital-to-analog con-
verter (DAC), hybrid beamforming, multiuser communications.

I. INTRODUCTION

Traditional secure communications primarily focus on pre-
venting messages from being decoded by potential eaves-
droppers. However, in specific scenarios such as battlefield
environments, even the regular wireless communications can
expose us to the enemy and result in fatal danger. This leads to
the emergence of covert communication techniques to achieve
enhanced security. In a typical wireless covert communication
system, a legitimate transmitter aims to communicate with a
legitimate user without being detected by a warden. However,
for the additive white Gaussian noise (AWGN) channel, the
square root law has been proved that only O(

√
n) bits can be

transmitted in n channel uses, indicating that the covert bits
per channel use decreases to zero if n grows to be infinity [1].
Therefore, uncertainties such as noise and channel fading are
investigated to achieve a positive covert rate [2], [3].

Besides of introducing uncertainties to the wireless com-
munications, we can also mitigate the power leakage to
the warden through elaborately designing beamformers [4],
[5]. For example, the authors in [4] investigate achieving
covertness in both beam training and data transmission stages
with a discrete Fourier transform codebook. The zero-forcing
and robust beamformers are proposed to maximize the covert
rate [5]. Moreover, the advancement of millimeter wave
(mmWave) massive antenna arrays leads to the emergence of
hybrid beamforming techniques [6], [7], which can also be
used for covert communications. A joint hybrid beamformer

and jamming design framework is proposed for a covert
communication system with a full-duplex receiver, where the
detection error probabilities of the warden are derived for
both single and multiple data stream cases [8]. However,
these works mainly focus on the ideal beamformer design
with infinite-resolution digital-to-analog converters (DACs) or
analog-to-digital converters (ADCs). On one hand, employing
high-resolution DACs or ADCs can result in significant power
consumption [9]. On the other hand, using low-resolution
DACs or ADCs introduces significant quantization noise,
which have negative impact on both the communication
performance and covertness.

In this paper, we investigate hybrid beamforming design
for covert multiple-input multiple-output (MIMO) communi-
cations with finite-resolution DACs, which impose practical
hardware constraints not yet considered by the existing works
and have negative impact on the covertness. Based on the
additive quantization noise model, we derive the detection
error probability of the warden considering finite-resolution
DACs. Aiming to maximize the sum covert rate (SCR)
between the transmitter and legitimate users subject to the
power and covertness constraints, we propose an alternating
optimization (AO) scheme to design the analog and digital
beamformers in an iterative manner. Specifically, for the
analog beamformer design subproblem, we transform it into
a quadratically constrained quadratic programming (QCQP)
problem with an extra constant-modulus constraint and solve
it by an inner majorization-minimization (iMM) method. For
the digital beamformer design subproblem, we transform it
into a standard QCQP convex problem, which is then solved
by the interior-point method.

The notations are defined as follows. Symbols for vectors
(lower case) and matrices (upper case) are in boldface. (·)∗,
(·)T and (·)H denote the conjugate, transpose and conjugate
transpose, respectively. [a]n, [A]m,n, [A]:,m and ∥A∥F de-
note the nth entry of the vector a, the entry on the mth row
and nth column, the mth column and the Frobenius norm of
the matrix A, respectively. A ⪰ 0 indicates that A is a posi-
tive semi-definite matrix. IL denotes an L×L identity matrix.
The functions vec(·), vec−1(·), Tr(·) and diag(·) denote the
vectorization, inverse operation of vectorization, trace and
diagonal matrix, respectively. Re(·) and ∠(·) denote the real
part and the angle of a complex-valued number, respectively.
E(·) denotes the statistical expectation. CN (µ,Σ) denotes a
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complex Gaussian distribution with mean µ and covariance
matrix Σ. Symbols j, R, C and ⊗ denote the square root of
−1, the set of real-valued numbers, complex-valued numbers
and the Kronecker product, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a covert mmWave MIMO communication
system, where a base station named Alice simultaneously
communicates with K legitimate users, meanwhile a warden
named Willie attempts to detect the existence of the commu-
nications. Alice uses a fully-connected hybrid beamforming
architecture with N antennas and NRF radio frequency (RF)
chains, where the antennas are placed in uniform linear
arrays with half wavelength intervals and each RF chain is
connected to a finite-resolution DAC. To reduce the hardware
complexity and ensure the performance of massive antenna
array communications, we set NRF = K ≪ N . The K
legitimate users and Willie are all equipped with a single
antenna for simplicity.

The transmitted information symbols of K data streams
from Alice are firstly precoded by a baseband digital beam-
former FB ≜ [fB,1, · · · ,fB,K ] ∈ CK×K , then converted by
finite-resolution DACs. The baseband transmitted signal can
be expressed as

xb = Q
( K∑

k=1

fB,ksk

)
, (1)

where sk ∈ C for k = 1, 2, · · · ,K is the information symbol
transmitted to the kth user. Q(·) denotes the quantization
function imposed by the finite-resolution DACs. Additionally,
we denote s ≜ [s1, s2, · · · , sk]T ∼ CN (0, IK), indicating
that the symbols from different data streams are independent
of each other. To derive a tractable expression for (1), we
use the the additive quantization noise (AQN) model [10] to
approximate the output with an linear form as

xb ≈ (1− β)

K∑
k=1

fB,ksk + ηq, (2)

where β is the quantization distortion parameter and it
depends on the resolution of the DACs. Let b denote the
number of quantized bits of the DACs. Specifically, if we set
b = 1, 2, · · · , 5, the values of β are 0.3634, 0.1175, 0.03454,
0.009497 and 0.002499, respectively. When b > 5, β can be
approximated by π

√
3

2 2−2b. As b grows to be infinity, β will
be 0 and it means that there is no quantization distortion.
ηq ∈ CK denotes the quantization noise and its covariance
matrix can be expressed as

Rq = β(1− β)diag

( K∑
k=1

fB,kf
H
B,k

)
. (3)

After being up-converted to the RF domain, the transmitted
signals are precoded by an analog beamformer FR ∈ CN×K .
Therefore, the received signal by the kth legitimate user can

be expressed as

yk = hH
k FR

( K∑
l=1

(1− β)fB,lsl + ηq

)
+ ηk, (4)

where ηk ∼ CN (0, σ2
k) denotes the AWGN at the kth

legitimate user. hk denotes the channel vector between Alice
and the kth legitimate user and can be expressed as

hk =

√
N

Dk

(
α
(0)
k a(N, θ

(0)
k ) +

Dk−1∑
d=1

α
(d)
k a(N, θ

(d)
k )

)
, (5)

where Dk denotes the total number of channel paths between
Alice and the kth user. α(0)

k and α
(d)
k for d = 1, 2, · · · , Dk−1

denote the channel gain for the line-of-sight (LOS) and the
dth non-line-of-sight (NLOS) channel paths, respectively. θ(0)k

and θ
(d)
k for d = 1, 2, · · · , Dk − 1 denote the channel angle-

of-departure (AoD) for the LOS and the dth NLOS channel
paths, respectively. Moreover, a(N, θ) is the normalized array
response and can be expressed as

a(N, θ) =
1√
N

[
1, ejπ sin(θ), · · · , ejπ(N−1) sin(θ)

]T
. (6)

Similarly, the channel vector between Alice and Willie can
be expressed as

hw =

√
N

Dw

(
α(0)
w a(N, θ(0)w ) +

Dw−1∑
d=1

α(d)
w a(N, θ(d)w )

)
, (7)

where Dw, αw and θw are distinguished with Dk, αk and θk
in (5).

In this paper, we assume that Alice knows the instantaneous
CSI of hk for k = 1, 2, · · · ,K, which can be obtained via
uplink training for channel estimation. However, Willie is
usually a passive node and we assume that only statistical
CSI of hw represented by Ωw is available to Alice [8].
Considering the worst case, we assume that Willie knows all
the instantaneous CSIs of hw and hk for k = 1, 2, · · · ,K.

B. Detection Performance of Willie

The signal detection process of Willie can be formulated as
a binary hypothesis testing problem. Specifically, hypothesis
H0 represents that Alice remains silent, while hypothesis H1

represents that Alice is transmitting signals. Then the received
signal at Willie in the tth time slot can be derived as
H0 : yw[t]=ηw[t], (8)

H1 : yw[t]=hH
wFR

( K∑
l=1

(1−β)fB,lsl[t]+ηq[t]
)
+ηw[t], (9)

where ηw[t] ∼ CN (0, σ2
w) denotes the AWGN received by

Willie in the tth time slot. For representation simplicity,
we define D0 and D1 to represent the decisions of Willie
under H0 and H1, respectively. Therefore, we can derive the
detection error probability of Willie as

Pe = PFA + PMD, (10)
where PFA ≜ Pr(D1|H0) denotes the false alarm probability
and represents that Willie performs inference D1 but H0

holds, and PMD ≜ Pr(D0|H1) denotes the missed detection
probability and represents that Willie performs inference D0
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SIQNRk =
(1− β)2|hH

k FRfB,k|2

(1− β)2
∑K

l=1,l ̸=k |hH
k FRfB,l|2 + hH

k FRRqFH
R hk + σ2

k

, k = 1, 2, · · · ,K. (11)

but H1 holds. The detailed derivation of Pe will be included
in Section III.

C. Problem Formulation

With the derivation of (3) and (4), we can define SIQNRk

as the signal to interference, quantization distortion and noise
ratio (SIQNR) for the kth user, which can be expressed as (11)
at the top of this page. Then the SCR can be given by

Rsum =

K∑
k=1

log(1 + SIQNRk). (12)

To proceed, the optimization problem can be expressed as

max
FR,FB

Rsum (13a)

s.t.
∣∣[FR]n,m

∣∣ = 1, n = 1, · · · , N,m = 1, · · · ,K, (13b)

Es

(∥∥∥FR

(
(1− β)FBs+ ηq

)∥∥∥2
F

)
≤ Pmax, (13c)

Ehw(Pe) ≥ 1− ϵ, (13d)
where ϵ is the predetermined level of covertness. (13b), (13c)
and (13d) denote the constant modulus constraints on the
elements of analog beamformer, the power constraint under
the AQN model and the covertness constraint, respectively.
Note that (13) is a non-convex problem and difficult to handle
owing to the coupling of FR and FB. To efficiently solve the
problem, we will propose the AO scheme to design the hybrid
beamformers in Section III.

III. AO SCHEME FOR HYBRID BEAMFORMER DESIGN

In this section, we will propose an AO scheme to solve
(13). Specifically, the problem transformation is presented
in Section III-A and the AO scheme for hybrid beamformer
design is proposed in Section III-B.

A. Problem Transformation

We first derive the expression of the power constraint (13c).
By substituting (3) into (13c) and using the fact that ∥A∥2F =
Tr(AAH), (13c) can be transformed as

Tr
(
FR

(
(1− β)2

K∑
l=1

fB,lf
H
B,l +Rq

)
FH
R

)
≤ Pmax. (14)

Then, we derive the expression of Pe in (13d). Similar to
[11], we assume that the blocklength is T , T ≫ 1 and Willie
can use T consecutive time slots to enhance its detection.
Then we define

PT
1 ≜

T∏
t=1

f(yw[t]|H1), (15)

PT
0 ≜

T∏
t=1

f(yw[t]|H0), (16)

where f(yw[t]|H0) = CN (0, σ2
w) and f(yw[t]|H1) =

CN
(
0,hH

wFR

(
(1 − β)2

∑K
l=1 fB,lf

H
B,l + Rq

)
FH
R hw + σ2

w

)
denote the likelihood functions of yw under H0 and H1,
respectively. To minimize the detection error probability P̂e,
Willie performs the optimal test [1] and P̂e can be derived as

P̂e = 1− V(PT
1 ,PT

0 ), (17)
where V(PT

1 ,PT
0 ) denotes the total variation distance between

PT
1 and PT

0 . Since it is difficult to further analyze the expres-
sions of V(PT

1 ,PT
0 ), we can use the Pinsker’s inequality [1]

to obtain a tractable upper bound as

V(PT
1 ,PT

0 ) ≤
√

1

2
D(PT

1 ,PT
0 ), (18)

where D(PT
1 ,PT

0 ) denotes the Kullback-Leibler (KL) di-
vergence from PT

1 to PT
0 . We first denote τ20 ≜ σ2

w and
τ21 ≜ hH

wFR

(
(1−β)2

∑K
l=1 fB,lf

H
B,l+Rq

)
FH
R hw+σ2

w. Then
we can obtain

D(PT
1 ,PT

0 ) = EP1
(T lnP1 − T lnP0)

= T
(
ln

τ20
τ21

+
τ21
τ20

− 1
)
. (19)

From Alice’s perspective, considering (13d), (17) and (18),
the covertness constraint can be replaced by

Ehw

(√1

2
D(PT

1 ,PT
0 )

)
≤ ϵ. (20)

By using the inequality ξ− ln(1+ξ) ≤ ξ2

2 ,∀ξ > 0 and letting
ξ =

τ2
1

τ2
0
− 1, we can derive an upper bound for the left hand

of (20) to provide a safer scenario for covertness, which can
be expressed as

Ehw

(√1

2
D(PT

1 ,PT
0 )

)
≤ Ehw

(√T

2
ξ
)
≤ ϵ. (21)

Subsequently, the covertness constraint can be transformed as

Tr

((
FR

(
(1−β)2

K∑
l=1

fB,lf
H
B,l+Rq

)
FH
R

)
Ωw

)
≤ 2ϵσ2

w√
T

. (22)

Therefore, the optimization problem can be expressed as
max
FR,FB

Rsum (23a)

s.t. (13b), (14), (22). (23b)
As we can see, the objective is expressed as a sum of loga-
rithmic functions of fractional items. Based on the quadratic
and Lagrangian dual transform [12], we introduce auxiliary
variables r ≜ [r1, r2, · · · , rK ]T and z ≜ [z1, z2, · · · , zK ]T,
then the equivalent form of the optimization problem (23) is
given by (24) at the top of this page.

B. AO-based Hybrid Beamformer Design
Since it is difficult to optimize FR,FB, r, z simultaneously,

we resort to the AO scheme [13] to solve (24). The detailed
procedures are presented as follows.
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max
FR,FB,r,z

fr(FR,FB, r, z) ≜
K∑

k=1

(
log(1 + rk)− rk + 2(1− β)

√
1 + rkRe(z

∗
kh

H
k FRfB,k) (24a)

− |zk|2
(
(1− β)2

K∑
l=1

|hH
k FRfB,l|2 + hH

k FRRqF
H
R hk + σ2

k

))
s.t. (13b), (14), (22). (24b)

ẑk =
(1− β)

√
1 + rkh

H
k FRfB,k

(1− β)2
∑K

l=1 |hH
k FRfB,l|2 + hH

k FRRqFH
R hk + σ2

k

, k = 1, 2, · · · ,K. (26)

1) Optimization for r: When fixing FR,FB, z, it can be
seen fr is a concave function of r, thus the optimal r̂k can
be obtained by letting ∂fr/∂rk = 0 for k = 1, 2, · · · ,K and
can be expressed just like the form of SIQNRk in (11), i.e.,

r̂k = SIQNRk, k = 1, 2, · · · ,K. (25)

2) Optimization for z: When FR,FB, r are fixed, fr is also
a concave function of z. Similarly, we let ∂fr/∂zk = 0 for
k = 1, 2, · · · ,K and the optimal ẑk can be obtained as (26)
at the top of this page.

3) Optimization for FR: Given FB, r, z, the optimization
problem for FR can be expressed as

max
FR

K∑
k=1

(
2(1− β)

√
1 + rkRe(z

∗
kh

H
k FRfB,k)

− |zk|2
(
(1− β)2

K∑
l=1

|hH
k FRfB,l|2 + hH

k FRRqF
H
R hk

))
(27a)

s.t. (13b), (14), (22). (27b)

The objective function in (27) related to FR can be trans-
formed as

K∑
k=1

(
2(1− β)

√
1 + rkRe(z

∗
kh

H
k FRfB,k)

− |zk|2
(
(1− β)2

K∑
l=1

|hH
k FRfB,l|2 + hH

k FRRqF
H
R hk

))
(a)
=

K∑
k=1

(
2(1− β)

√
1 + rkRe

(
z∗kTr(fB,kh

H
k FR)

)
− |zk|2

(
Tr

(
FR

(
(1− β)2FBF

H
B +Rq

)
FH
R hkh

H
k

)))
(b)
= −fH

RQ0fR − 2Re(pH
0 fR), (28)

where
fR≜vec(FR), (29)

Q0≜
K∑

k=1

|zk|2
((
(1−β)2(FBF

H
B )T+RT

q

)
⊗(hkh

H
k )

)
, (30)

p0≜−
K∑

k=1

(1− β)zk
√
1 + rk(IK ⊗ hk)f

∗
B,k. (31)

Note that the equality (a) in (28) holds because Tr(AB) =
Tr(BA). The equality (b) holds due to the fact
that Tr(AHBC) =

(
vec(A)

)H
(I ⊗ B)vec(C) and

Tr(ABAHC) = vec(A)H(BT ⊗C)vec(A).

Similarly, we can rewrite the constraints (14) and (22).
Then, (27) can be equivalently transformed as

min
fR

fH
RQ0fR + 2Re(pH

0 fR) (32a)

s.t. fH
RQ1fR ≤ Pmax, (32b)

fH
RQ2fR ≤ 2ϵσ2

w√
T

, (32c)∣∣[fR]u
∣∣ = 1, u = 1, 2, · · · ,KN, (32d)

where
Q1 ≜

(
(1− β)2(FBF

H
B )T

)
⊗ IN , (33)

Q2 ≜
(
(1− β)2(FBF

H
B )T

)
⊗Ωw. (34)

The newly obtained constraints (32b), (32c) and (32d) cor-
respond to the original (14), (22) and (13b), respectively.
Therefore, the problem in (32) is transformed into a standard
QCQP problem with additional constant-modulus constraints,
enabling us to solve it efficiently with the iMM method [14].
Once we obtain a feasible solution fR, the quadratic terms
fH
RQvfR for v = 1, 2, 3 can be upper-bounded by

fH
RQvfR≤2λvKN+2Re

(
fH
R (Qv − λvIN )fR

)
−f

H

RQfR,
(35)

where λv is usually selected as the maximum eigenvalue or
the trace of Qv to satisfy λvIKN −Qv ⪰ 0. Therefore, we
can derive a surrogate problem for (32) as

min
fR

g0(fR) (36a)

s.t. gv(fR) ≤ 0, v = 1, 2, (36b)∣∣[fR]u
∣∣ = 1, u = 1, 2, · · · ,KN, (36c)

where we define
g0(fR) ≜ 2Re

(
fH
R

(
(Q0 − λ0IKN )fR + p0

))
(37)

g1(fR) ≜ 2Re
(
fH
R

(
(Q1 − λ1IKN )fR

))
+ 2λ1KN

− f
H

RQ1fR − Pmax, (38)
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g2(fR) ≜ 2Re
(
fH
R

(
(Q2 − λ2IKN )fR

))
+ 2λ2KN

− f
H

RQ2fR − 2ϵσ2
w√
T

. (39)

Since (36) is still non-convex due to (36c), we can solve its
Lagrange dual problem which is expressed as

sup
{ω1,ω2≥0}

min
{|[fR]u|=1}KN

u=1

g0(fR) +

2∑
v=1

ωvgv(fR). (40)

Since the objective in (40) is a linear function of fR, the
optimal solution for fR can be given by

f̂R(ω1, ω2) = exp

(
j∠

( 2∑
v=1

(
(λvIKN −Qv)fR

)
ωv

+ (λ0IKN −Q0)fR

))
. (41)

Additionally, considering the remaining optimality condi-
tions, i.e.,

gv(f̂R(ω1, ω2)) ≤ 0, ωv ≥ 0, v = 1, 2, (42)

ωvgv(f̂R(ω1, ω2)) = 0, v = 1, 2, (43)
we can alternately optimize the dual variables ω1 and ω2 until
convergence. Based on [14, Lemma 3], the bisection method
can be used to obtain the numerical results for ω1 and ω2.
Using the converged dual variables, we can derive the optimal
fR via (41).

4) Optimization for FB: Given FR, r, z, we now optimize
FB. We first define fB ≜ vec(FB) and introduce a series of
auxiliary matrices shown as

Sl ≜ [

l−1︷ ︸︸ ︷
0, · · · ,0, IK ,

K−l︷ ︸︸ ︷
0, · · · ,0], l = 1, 2, · · · ,K (44)

to satisfy that [FB]:,k = SkfB for k = 1, 2, · · · ,K. Then we
can transform the optimization problem for fB as

min
fB

fH
BΞ0fB + 2Re(ϕH

0 fB) (45a)

s.t. fH
RΞ1fR ≤ Pmax, (45b)

fH
RΞ2fR ≤ 2ϵσ2

w√
T

, (45c)

where

ϕ0 ≜ −
K∑

k=1

(
(1− β)zk

√
1 + rkS

H
k F

H
R hk

)
, (46)

Ξ0 ≜
K∑

k=1

|zk|2
( K∑

l=1

(
(1− β)2SH

l F
H
R hkh

H
k FRSl

+ β(1− β)SH
l diag(F

H
R hkh

H
k FR)Sl

))
, (47)

Ξ1 ≜
K∑

k=1

SH
k

(
(1− β)2FH

R FR

+ β(1− β)diag(FH
R FR)

)
Sk, (48)

Ξ2 ≜
K∑

k=1

SH
k

(
(1− β)2FH

R ΩwFR

+ β(1− β)diag(FH
R ΩwFR)

)
Sk

)
. (49)

Algorithm 1 AO-based Hybrid Beamformer Design.
1: Input: h1, · · · ,hK , Ωw, Pmax, ϵ.
2: Initialize FR, FB.
3: repeat
4: Update rk, k = 1, 2, · · · ,K via (25).
5: Update zk, k = 1, 2, · · · ,K via (26).
6: Update analog beamformer fR by solving (32).
7: Update digital beamformer fB by solving (45).
8: until fr in (24) is converged.
9: Output: FR = vec−1(fR), FB = vec−1(fB).

Since Ξ0,Ξ1 and Ξ2 are all Hermitian semi-definite ma-
trices, (45) is a standard QCQP convex problem, which can
be solved by existing optimization toolbox.

Finally, We summarize the proposed AO scheme for hybrid
beamformer design in Algorithm 1.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
AO scheme. We suppose that Alice is equipped with N = 64
antennas and NRF = 4 RF chains serving K = 4 legitimate
users. The channels between Alice and each legitimate user
(or Willie) are all established with D = 3 channel paths with a
LOS path and two NLOS paths. Specifically, we assume that
the channel gain of the LOS path obeys α(0) ∼ CN (0, 1),
the other two channel gains of NLOS paths obey α(1) ∼
CN (0, 0.01) and α(2) ∼ CN (0, 0.001) [15]. The maximal
transmission power is Pmax = 0 dBw and the noise powers
are σ2

1 = σ2
2 = · · · = σ2

K = σ2
w = 10 dBm.

Fig. 1 illustrates the SCR versus different predetermined
detection error probabilities, where we compare the perfor-
mance of our proposed AO scheme for three cases including
b = 1, 4 and 7. For comparisons, we consider two baseline
schemes: 1) Fully-digital beamformer optimization (FDBO)
scheme that we design a fully-digital beamformer F ∈ CN×K

with a revised AO scheme in Algorithm 1 by removing
the analog beamformer design and revising the dimension
of the digital beamformer. 2) Maximum ratio transmitting
(MRT) scheme that we design a fully-digital beamformer
F ∈ CN×K commonly used for covertness analysis, where
F =

√
pHH and p is normalized to satisfy both power and

covertness constraints. It can be observed that our proposed
AO scheme outperforms the MRT scheme. Additionally, when
quantization noise is negligible at b = 7, the AO scheme can
achieve the performance comparable to that of the FDBO
scheme. Moreover, the AO scheme demonstrates superior
stability against variations in covertness constraints compared
to the FDBO scheme at b = 1. The reason is that the extra
analog beamforming in the hybrid architecture reduces the
leakage of quantization noise in the Alice-Willie link so that
the transmit power can be utilized as fully as possible without
exceeding Pmax to achieve better SCR performance.

In Fig. 2, we evaluate the SCR performance as a function
of b to illustrate the impact of the quantized bits of DACs. It
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Fig. 1. Comparisons of the SCR for different schemes with varying detection
error probabilities.

Fig. 2. Comparisons of the SCR for different schemes with varying
quantized bits.

can be observed that as b increases, the SCR performance first
improves when b ≤ 5 and then tends to be flat when b > 5.
This phenomenon occurs because that the quantization noise
decreases rapidly with increasing b. Additionally, the result
shows that our proposed AO scheme exhibits lower sensitivity
to the covertness than the FDBO scheme.

Fig. 3 illustrates the SCR performance versus different
numbers of the legitimate users. As K increases, both the
FDBO and the AO schemes demonstrate an improvement
in SCR performance, whereas the MRT scheme exhibits a
decline. The reason is that the MRT scheme does not consider
the covertness, multiuser interference, and quantization noise
suppression, different from the other two schemes. Further-
more, the AO scheme can outperform the FDBO scheme
when K > 3 in the case of low-resolution DACs, e.g., b = 1,
due to smaller quantization noise in the hybrid beamforming
architecture.

V. CONCLUSION

In this paper, we have investigated the hybrid beamformer
design for covert mmWave MIMO communications with
finite-resolution DACs. For future research, we will extend
our work to the wideband mmWave MIMO communications.
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