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Abstract—Beam allocation is considered for wideband mul-
tiuser mmWave massive MIMO systems. By introducing the
interference-free achievable rate, the analog precoder and the
digital precoder is decoupled for the beam allocation problem.
Then the beam allocation is treated as a multi-label classification
problem and a deep learning-based beam allocation (DLBA)
scheme is proposed, where a convolutional neural network is
trained offline using the simulated environments to predict the
beam allocation for all the users. In order to avoid the beam
conflict and maximize the sum-rate, a rule to avoid the beam
conflict is also proposed. Simulation results demonstrate that
the DLBA scheme can substantially reduce the computational
complexity with a marginal sacrifice of sum-rate performance,
compared to the existing schemes.

Index Terms—Beam allocation, deep learning, massive
MIMO, mmWave communications

I. INTRODUCTION

Due to large bandwidth of millimeter wave (mmWave)

communications and high spectral efficiency of massive

MIMO, mmWave massive MIMO is considered as one of the

most promising key technologies for next-generation wireless

communications [1], [2]. Early work focuses on narrowband

mmWave massive MIMO channels, but the experimental

results show that the mmWave massive MIMO channels

are wideband. Compared to the narrowband channels, the

wideband channels are frequency-selective [3]. To deal with

the frequency-selective fading, orthogonal frequency division

multiplexing (OFDM) is typically adopted by mmWave mas-

sive MIMO [4].

To reduce the hardware complexity, we employ hybrid

precoding including analog precoding and digital precoding

for wideband mmWave MIMO OFDM systems [5]. In [6], by

exploiting the sparse structure of mmWave MIMO channel

and formulating the hybrid precoding design problem as a

sparse reconstruction one, the authors propose a spatially

sparse precoding algorithm based on simultaneous orthogonal

matching pursuit (SOMP). In [7], aiming at maximizing the

sum-rate of multiple users, a two-stage (TS) limited feedback

multiuser hybrid precoding scheme is proposed. However,

neither [6] nor [7] considers the beam conflict, which occurs

if multiple spatially-close users employ the same analog

beam. Note that beam conflict causes the low rank of the

analog precoder matrix and results in the severe multiuser

interference that cannot be mitigated by the digital precoder.

In [8], the design of analog precoder is transformed into an

assignment problem aiming at selecting mutually different

codewords from the codebook for different users to achieve

the maximum sum-rate, where a Hungarian-based codeword

assignment scheme is proposed.

In this paper, we consider the beam allocation problem

for wideband multiuser mmWave massive MIMO systems.

By introducing the interference-free (IF) achievable rate, we

decouple the analog precoder and the digital precoder. Then

we treat the beam allocation as a multi-label classification

problem and a deep learning-based beam allocation (DLBA)

scheme is proposed, where a convolutional neural network

(CNN) is trained offline using the simulated environments to

predict the beam allocation for all the users online. In order

to avoid the beam conflict and maximize the sum-rate, we

propose a rule to avoid the beam conflict.

Notations: Symbols for vectors (lower case) and matrices

(upper case) are in boldface. For a vector a, [a]m and ‖a‖2
denotes its mth entry and l2-norm. For a three-dimensional

matrix A, A(i) denotes the ith two-dimensional matrix. For

a two-dimensional matrix A, [A]m,:, [A]:,n, [A]m,n, AT,

A−1, AH and ‖A‖2F denote the mth row, the nth column,

the entry on the mth row and nth column, the transpose, the

inverse, the conjugate transpose (Hermitian), and Frobenius

norm, respectively. IK denotes an K × K identity matrix.

E{·} and CN (0, σ2) denote the expectation and the complex

Gaussian distribution with the zero mean and the variance

being σ2, respectively. The symbols C and R denote the set of

complex-valued numbers and the set of real-valued numbers,

respectively.

II. PROBLEM FORMULATION

We consider a wideband multiuser mmWave massive

MIMO system, whose block diagram is shown in Fig. 1.

To deal with the frequency-selective fading of the wideband

mmWave channels, we typically adopt OFDM modulation.

Suppose the number of OFDM subcarriers is U . The base

station (BS) equipped with K RF chains and NBS uniform

linear array (ULA) antennas, transceives K independent data

streams. According to the hybrid precoding structure of

mmWave massive MIMO system, we assume 1 ≤ K � NBS.

Each user is equipped with a single RF chain and a single

antenna.

During the downlink transmission, the transmitted signal is

denoted by

X � [x1,x2, . . . ,xU ] ∈ C
K×U (1)
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Fig. 1. Block diagram of wideband multiuser mmWave massive MIMO system.

where [X]k,u represents the signal sent by the BS to the kth

user on the uth OFDM subcarrier, for k = 1, 2, . . . ,K and

u = 1, 2, . . . , U , and xu ∈ C
K is the transmit signal vector

by the BS to all the K users on the uth OFDM subcarrier.

The received signal by all the K users on all the U OFDM

subcarriers form a matrix

Y � [yT
1 ,y

T
2 , . . . ,y

T
K ]T ∈ C

K×U (2)

where [Y ]k,u represents the signal received by the kth user

on the uth OFDM subcarrier, and yk ∈ C
U is the received

signal vector by the kth users on all the OFDM subcarriers.

For the uth OFDM subcarrier, u = 1, 2, . . . , U , we have

[Y ]:,u = H(u)FZ(u)xu + [Φ]:,u (3)

where H(u) ∈ C
K×NBS is the frequency-domain downlink

channel matrix on the uth OFDM subcarrier,

Z(u) �
[
z
(u)
1 , z

(u)
2 , . . . , z

(u)
K

] ∈ C
K×K (4)

is the digital precoder for the uth OFDM subcarrier,

F � [f1,f2, . . . ,fK ] ∈ C
NBS×K (5)

is the analog precoder, and [Φ]:,u ∈ C
K ∼ CN (0, σ2IK)

is the noise term obeying the complex Gaussian distribution

with zero mean and variance of σ2. Since the angle of

departure (AoD) and angle of arrival (AoA) are the same

for different OFDM subcarriers, the analog precoder F is the

same for different OFDM subcarriers. Note that F is typically

implemented by a phase-shifter network, where each entry of

F has a constant modulus and only its phase can be changed.

To satisfy the constraint of maximum transmit power PT ,

we have E
{
xux

H
u

}
= PT

KU IK .

Moreover, we have ∥∥FZ(u)
∥∥2
F
= 1 (6)

implying that the hybrid precoder does not provide any power

gain.

The mmWave massive MIMO downlink channel vector

between the BS and the kth user is assumed to be frequency-

selective with a delay of d taps in the time domain, d =
1, 2, . . . , D, and can be expressed as

ck(d) =

√
NBS

Lk

Lk∑
l=1

αl,kp(dTs − τl,k)a
H(NBS, φl,k) (7)

where Lk denotes the number of resolvable channel paths,

αl,k is the complex-valued channel gain, τl,k is the multipath

delay, φl,k ∈ (−π
2 ,

π
2 ] is the AoD of the lth path, p(t) is

the pulse-shaping function, Ts is the sampling interval and D
is the number of maximum channel delay taps. The channel

steering vector of the BS, denoted by a(NBS, φl,k) ∈ C
NBS ,

can be expressed as

a(NBS, φl,k) �
1√
NBS

[
1, ejπ sinφl,k , . . . , ej(NBS−1)π sinφl,k

]T

(8)

where the antennas are placed with half wavelength interval.

In fact, H(u) in (3) can be further expressed as

(H(u))T �
[
(h

(u)
1 )T, (h

(u)
2 )T, ..., (h

(u)
K )T

]
(9)

where h
(u)
k ∈ C

1×NBS is the frequency-domain channel

vector between the BS and the kth user on the uth OFDM

subcarrier. Given ck(d) in (7), h
(u)
k can be expressed as

h
(u)
k =

D−1∑
d=0

ck(d)e
−j 2πu

U d, u = 1, 2, . . . , U (10)

which is essentially the U -point discrete Fourier transform

(DFT) of ck(d).
To fast generate the analog precoder, each column of F is

selected from a predefined codebook F . We adopt the widely

used DFT codebook as [9]

F � {f(n), n = 1, 2, . . . , NBS} (11)

where the nth codeword in the codebook is

f(n) � a

(
NBS,−1 +

(2n− 1)

NBS

)
(12)
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Base on (3), the signal received by the kth user on the uth

OFDM subcarrier can be expressed as

[Y ]k,u = h
(u)
k FZ(u)[x]u + [Φ]k,u

= h
(u)
k Fz

(u)
k [X]k,u

+ h
(u)
k F

K∑
i=1,i �=k

z
(u)
i [X]i,u + [Φ]k,u.

(13)

We denote the achievable rate of the kth user on the uth

OFDM subcarrier by [R]k,u, which can be expressed as

[R]k,u = log2

⎛
⎜⎝1 +

PT

KU

∣∣∣h(u)
k Fz

(u)
k

∣∣2
PT

KU

∑
i�=k

∣∣∣h(u)
k Fz

(u)
i

∣∣∣2 + σ2

⎞
⎟⎠ . (14)

It is seen that there exists the multiuser interference in the

denominator of (14), which will degrade the performance of

[R]k,u.

Therefore, the optimizing problem to maximize the sum-

rate of all the K users on all the U OFDM subcarriers can

be expressed as

max
F ,Z

1

U

U∑
u=1

K∑
k=1

[R]k,u (15a)

s.t. fk ∈ F , k = 1, 2, . . . ,K (15b)

fv �= fw, v, w = 1, 2, . . . ,K, v �= w (15c)

(6). (15d)

Note that (15b) indicates that the analog precoder is se-

lected from the predefined codebook F in (11). The constraint

(15c) ensures that different codewords from F are selected to

serve different users, which can avoid the beam conflict. Once

the beam conflict occurs, i.e., two or more users select the

same codeword from F , F will be low-rank and the multiuser

interference can not be mitigated by the digital precoder Z,

which substantially impairs the sum-rate performance.

The optimization problem (15) is challenging due to the

difficulty of multiuser codeword selection and the coupling

between F and Z , hence the problem (15) is a typical

non-convex multivariate mixed integer non-linear problem of

which the optimum is difficult to find. Therefore, we adopt

the hierarchical design idea to decouple F and Z and treat

the beam allocation as a multi-label classification problem.

III. IMPROVED DLBA SCHEME DESIGN

In practice, we typically first design the analog precoder to

make the beams align with the mmWave MIMO channel, and

then design the digital precoder to mitigate the interference

among different user streams, indicating that we first design

F and then design Z. To obtain the optimal solution of F , we

need to find K best codewords from totally NBS codewords

in F . It requires to traverse (NBS)
K kinds of codeword

combinations. For each kind of codeword combination, we

need to design the corresponding digital precoder to compute

the sum-rate. From all kinds of codeword combinations, we

Simulated
environment BACNN Calculate

loss
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environment Prediction Beam conflict

avoidance

Offline Training

Online Deployment

Update weights

ĝ

g

ĝ FAnalog precoder 
determination

'T

'T G

Preprocessing
T

Preprocessing
T

Post-processing
Ĝ

Fig. 2. Block diagram of the DLBA scheme.

finally select the one with the largest sum-rate. However, the

computational complexity is prohibitively high.

Note that (15c) guarantees there is no beam conflict

and therefore the multiuser interference is small. Then the

function of Z to mitigate the multiuser interference can

be temporarily neglected when designing F . Once F is

designed, we then design Z, which can decouple F and Z
and substantially reduce the computational complexity. To this

end, we introduce the IF achievable rate of the kth user on

the uth OFDM subcarrier by [R]IFk,u, which can be expressed

as

[R]IFk,u = log2

⎛
⎜⎝1 +

PT

∣∣∣h(u)
k fk

∣∣∣2
KUσ2

⎞
⎟⎠ . (16)

Then (15) can be converted into

max
F

1

U

U∑
u=1

K∑
k=1

[R]IFk,u (17a)

s.t. fk ∈ F , k = 1, 2, . . . ,K (17b)

fv �= fw, v, w = 1, 2, . . . ,K, v �= w. (17c)

It is a typical codeword selection problem, which can be

solved by the Hungarian algorithm. To reduce the compu-

tational complexity of the Hungarian algorithm so that the

codeword selection can be performed in real-time, we propose

a DLBA scheme, which includes the offline training and

online deployment stages. As shown in Fig. 2, during the

offline training stage, we use the simulated environment to

train the proposed convolutional neural network for beam

allocation (BACNN). During the online deployment stage, we

use the trained BACNN for codeword selection by predicting

the beam allocation matrix. Then based on the beam conflict

avoidance rule, we update the beam allocation matrix so that

the constraint (17c) can be strictly satisfied. The final output

is the designed analog precoder. The detailed steps of the

DLBA scheme are summarized in Algorithm 1.

We perform the beam sweeping using all the codewords

in F for all the users [10]. Then we can compute the IF

achievable rate of the kth user as

r(k, n) =
1

U

U∑
u=1

log2

⎛
⎜⎝1 +

PT

∣∣∣h(u)
k f(n)

∣∣∣2
KUσ2

⎞
⎟⎠ (18)
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Algorithm 1 DL-based Codeword Selection and Analog

Precoding

1: Input: F ,T , g, J,NBS,K.
2: (Preprocessing)

3: For each row of T , keep the largest J entries and set the

other entries to be zero.

4: Obtain T
′

based on T by deleting its all-zero columns

and fixing its size.

5: (Beam Allocation Training and Prediction)

6: Input training data T
′

and the label g to the BACNN for

offline training.

7: Feed online data T
′

to the trained BACNN, obtaining its

output as ĝ.

8: (Post-processing)

9: Recover Ĝ′ from ĝ and recover Ĝ from Ĝ′.
10: (Beam conflict avoidance)

11: Obtain G̃ by applying the rule to avoid beam conflict.

12: Determine F̃ based on G̃.

13: Output: F̃ .

if the BS uses f(n) to serve the kth user, k = 1, 2, . . . ,K,

n = 1, 2, . . . , NBS. In fact, we may substitute fk by f(n) in

(16) and then make summation of [R]IFk,u for all the OFDM

subcarriers, i.e., u = 1, 2, . . . , U , so that (18) can be figured

out.

We define a complex-valued matrix T ∈ C
K×NBS , with

[T ]k,n expressed as

[T ]k,n � J (r(k, n), γk) (19)

where J (x, y) is a threshold function as

J (x, y) �
{

x, if x ≥ y,
0, else.

(20)

In (19), γk is a threshold to control the number of candidate

codewords for the kth user. Given the number of candidate

codewords for each user, denoted as J (2 ≤ J ≤ NBS), we

may set γk as the the J th largest value of {r(k, n), n =
1, 2, . . . , NBS}. By using the candidate codewords, each user

can have more choices when beam conflict occurs.

Next we define a binary matrix G ∈ {0, 1}K×NBS , which

is introduced to store the results of beam allocation. If f(n)
is selected to serve the kth user, then [G]k,n = 1; otherwise,

[G]k,n = 0. Then (17) can be rewritten as

max
G

K∑
k=1

NBS∑
n=1

[T ]k,n[G]k,n (21a)

s.t.

K∑
k=1

[G]k,n ≤ 1, n = 1, 2, . . . , NBS (21b)

NBS∑
n=1

[G]k,n = 1, k = 1, 2, . . . ,K (21c)

where (21b) indicates that each codeword can be selected at

most once and (21c) indicates that each user can select only

one codeword.

ReLU ReLU

ReLU
FC1

FC2

1C
2C 3C

KJ

K

1,1[ ]'T 1,2[ ]'T
1,[ ] KJ

'T

,1[ ]K
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'T

3×3 conv

3×3 conv

Max 
Pooling

Max 
Pooling Max 

Pooling
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Convolution part FC partInput

2,1[ ]'T

ĝ

Output

Fig. 3. BACNN model for DLBA scheme.

Each row of G is a one-hot vector, which is the output of

the single-label classification problem. Then we concatenate

each row of G, obtaining a row vector g ∈ R
1×(KNBS) as

training label, which can be treated as the output of a multi-

label classification problem. On the other hand, T resembles

an image with K × NBS pixels. Note that the CNN proves

to be efficient to deal with the image classification problem.

Therefore, it is natural to use the CNN to learn the features of

T to solve this multi-label classification problem [11]. To this

end, we propose a BACNN for beam allocation in mmWave

massive MIMO system.

As shown in Fig. 3, the BACNN consists of convolution

part and fully connected (FC) part. The convolution part is

composed of three sub-blocks sequentially connected. Each

sub-block consists of a rectified linear unit (ReLU) layer, a

convolution layer and a max-pooling layer, where the ReLU

layer can be represented as fRe(x) = max(0, x). The ReLU

layers prevent negative values and therefore guarantee the

non-linearity of the BACNN. The convolution layer performs

two-dimensional spatial convolution for data. The convolution

layers in three sub-blocks are set to be the same size 3 × 3
but different depth C1 = 16, C2 = 32 and C3 = 64. The

max-pooling layers, which are used to reduce data size and

speed up the computation, are set to be the same size 2× 2.

In addition, the zero-padding is used to ensure that the size

of input data matches the convolution kernel. FC part, which

follows convolution part, consists of two FC layers with 512

and 256 neurons, respectively.

To reduce the storage overhead of T , we need to make

some preprocessing on T . First, for each row of T , we keep

the largest J entries and set the other entries zero. Then we

delete all-zero columns from T , obtaining T
′ ∈ R

K×N
′
,

since the codewords corresponding to these columns are not

candidates for any user. Note that we have K ≤ N ′ ≤ NBS.

Since N ′ is variable, which brings challenge for the CNN, we

need to find a upper bound for N ′ so that the size of input

data to the CNN is fixed. In practice, NBS is typically larger

than 128, while J and K are around 4 and 16, respectively.

In the context, we have K ≤ N ′ ≤ KJ ≤ NBS, where KJ is

a better upper bound for N ′ than NBS, from the perspective

of reducing the storage overhead of T ′. By adding KJ −N
′

zero columns on the right of T ′, we obtain a fixed size T ′ ∈
R

K×(KJ) and take T ′ as the input of the BACNN.

We denote the output of the BACNN as ĝ ∈ R
1×(K2J),

916Authorized licensed use limited to: Southeast University. Downloaded on August 13,2022 at 07:52:16 UTC from IEEE Xplore.  Restrictions apply. 



where ĝ is a prediction of g. Opposite to the procedures

obtaining g from G, we recover Ĝ′ ∈ R
K×(KJ) from ĝ.

Also opposite to the procedures obtaining T ′ from T , we

recover Ĝ ∈ R
K×NBS from Ĝ′.

In order to satisfy (21c) to avoid the beam conflict and

therefore maximize the sum-rate, we propose a rule as fol-

lows. For each row of Ĝ, we set the largest entry to be one

and the other entries to be zero, obtaining a binary matrix

G̃, which ensures the constraint in (21b). If the summation

of any column of G̃ is larger than one, there is beam

conflict. If there exists an integer N , where the summation

of the N th column of G̃ is M(M > 1), M users denoted

as k1, k2, . . . , kM are involved in the beam conflict. We

sort {[Ĝ]km,N , m = 1, 2, . . . ,M} in descending order as

[Ĝ]
̂k1,N

≥ [Ĝ]
̂k2,N

≥ . . . ≥ [Ĝ]
̂kM ,N .

1) The codeword f(N) is allocated to the k̂1th user.

2) For the k̂2th user, we denote the indices of his candidate

codewords that have not yet been allocated to any users

as Ω. We select the codeword with the index as

î = argmax
i∈Ω

[T ]k2,i (22)

for the k̂2th user. Then we set

[G̃]
̂k2,N

= 0, [G̃]
̂k2,̂i

= 1. (23)

3) We repeat 2) for the k̂3th, . . . , k̂M th user.

After applying the rule to avoid the beam conflict, the

summation of any column of G̃ is no larger than one and

the number of nonzero entries of G̃ is K. For each nonzero

entry of G̃, the row index and the column index are denoted

as k and ñ, respectively. Then the codeword from F allocated

to the kth user is f̃k = f(ñ), k = 1, 2, . . . ,K. Finally, the

designed analog precoder is

F̃ �
[
f̃1, f̃2, . . . , f̃K

]
. (24)

After F̃ is determined, we define the equivalent channel

matrix H
(u)
e as

H(u)
e � H(u)F̃ (25)

for u = 1, 2, . . . , U . Based on (25), (3) can be rewritten as

[Y ]:,u = H(u)
e Z(u)xu + [Φ]:,u. (26)

According to (26), the design of Z(u) depends on H
(u)
e .

We adopt pilot-assisted channel estimation to estimate H
(u)
e

as H̃
(u)
e [12]. Based on the minimum mean squared error

(MMSE) criterion, the designed digital precoder can be

determined by

Z̃(u) = (H̃(u)
e )H

(
PT

KU
H̃(u)

e (H̃(u)
e )H + σ2IK

)−1

. (27)

To satisfy the power constraint in (6), we need to normalize

each column of Z̃(u), u = 1, 2, . . . , U .

IV. SIMULATION RESULTS

To evaluate the system performance, we set the number

of the BS antennas as NBS = 128. The number of OFDM

subcarriers is set to U = 16. We set the wideband mmWave

channel parameters according to the delay model [3], includ-

ing the maximum number of delay taps D = 4, the sampling

period Ts = 1/1760 μs and the roll-off coefficient β = 0.25.

The number of channel paths between the BS and the kth

user for k = 1, 2, . . . ,K is set to Lk = 4, including a LoS

path with the complex channel gain α1,k ∼ CN (0, 1) and

three NLoS paths with the complex channel gain αl,k ∼
CN (0, 0.1), l = 2, 3, 4. We suppose the AoD of each path

φl,k obeys the uniform distribution in (−π/2, π/2] and the

delay of each path τl,k obeys the uniform distribution in

[0, (D − 1)Ts]. We set the total transmit power PT = 1. The

DLBA scheme is compared with the existing fully digital

(FD) scheme, Hungarian scheme [8], TS scheme [7] and

SOMP scheme [6].

As shown in Fig. 4, we compare the sum-rate performance

for the five schemes at different SNR when K = 16. We set

J = 4, which means each user has four candidate codewords

to select. The performance of FD is provided as the upper

bound. It is shown that the DLBA scheme achieves almost the

same performance as the Hungarian scheme but outperforms

the TS and SOMP schemes. When SNR = 20 dB, the DLBA

scheme has 10.3% and 38.75% performance improvement

over the TS and SOMP scheme, respectively, and has the

almost the same performance as the Hungarian scheme. Note

that both the TS scheme and SOMP scheme do not tackle the

beam conflict, which substantially reduces the performance.

As shown in Fig. 5, we compare the averaged sum-rate for

the five schemes with different K when SNR = 15dB. The

averaged sum-rate is defined as the ratio of the sum-rate over

K. It is shown that as K increases, the DLBA scheme drops

more slowly than the TS and SOMP schemes, and has the

same trend as the Hungarian scheme.

As shown in Fig. 6, we compare the running time for the

five schemes with different K. To fairly compare the per-

formance of different schemes, all schemes are implemented

in Python 3.7 with TensorFlow-GPU 1.7.0 and executed on

the same computer with a six-core processor, 16GB RAM

and NVIDIA GeForce GTX 1660 Ti graphic card. The

running time for different schemes grows, as K increases.

It is seen that the FD scheme is the fastest, but it is only

considered as the low bound and can not be implemented in

practice. The DLBA scheme is faster than the TS, SOMP and

Hungarian schemes, since it adopts the CNN to predict the

beam allocation while the latter three schemes need iterative

search to obtain the optimal solution.

V. CONCLUSIONS

In this paper, we have decoupled the analog precoder

and the digital precoder by introducing the IF achievable

rate. Then we have treated the beam allocation as a multi-

label classification problem and have proposed the DLBA

scheme. In order to avoid the beam conflict and maximize
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Fig. 4. Comparison of sum-rate performance for different schemes at
different SNR.

Fig. 5. Comparison of averaged sum-rate for different schemes and different
K.

the sum-rate, we have proposed a conflict avoidance rule.

Simulation results have demonstrated that the DLBA scheme

can substantially reduce the computational complexity with a

marginal sacrifice of sum-rate performance, compared to the

existing schemes.
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