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Abstract—We address the image retrieval problem for a
wireless system including an edge server and an edge device. The
query image is first compressed by the edge device, and then
transmitted into wireless channel, while the edge server retrieves
the received image. Different from conventional schemes directly
compressing features via unsupervised learning regardless of
the database semantic distribution, we design a deep semantic
coding (DSC) scheme by integrating the inverted semantic index
structure of the database into the coding process, which can
utilize the prior semantic information of the database to reduce
the bandwidth. We extract the feature vectors from the images
via a convolutional neural network and generate the semantic
guided code head, which is followed by the product quantization.
The experimental results verify the effectiveness of the DSC
scheme in reducing the bandwidth as well as improving the
performance of wireless image retrieval.

Index Terms—Convolutional neural network, deep learning,
semantic coding, wireless image retrieval

I. INTRODUCTION

The semantic communication systems currently consider
the case that one of the intelligent tasks needs to be completed
by internet of things (IoT) device [1]. To solve the problem
that subjective semantic information is difficult to extract,
a series of engineering realizable semantic communication
methods are proposed for different types of information
sources based on deep learning technology [2]–[9]. For
semantic text transmission, deep learning based semantic
communications (DeepSC) proposes a communication system
based on Transformer [4]. Then a lightweight distributed
semantic communication system is further designed so as
to deploy DeepSC on IoT devices [5]. Besides, DeepSC
is extended to speech signal transmission and a semantic
coding method is investigated based on attention mechanism,
named as DeepSC-S [6]. The widely used method joint source
channel coding (JSCC) based on LSTM network is firstly
considered for text and speech transmission [7]. Owing to the
superiority of JSCC, some researchers apply it to the image
transmission task. For example, a JSCC approach based on
convolutional neural network (CNN) realizes image transmis-
sion in the wireless channel, which optimizes the semantic
coding to improve the performance of image transmission [8].
Inspired by this work, a retrieval-oriented image compression
scheme is proposed, which is the first work to study image
retrieval over wireless channel [9].

Among machine learning tasks, retrieval is one of the
indispensable tasks for remote inference which can be applied
to autonomous vehicles or surveillance systems to iden-
tify vehicles, persons or scenes according to sensory data.

Through retrieval technologies, the query image of a person,
a vehicle or a scene is searched in a large database on
edge servers as shown in Fig. 1. For the reason that the
central large-scale data can not be visited by edge devices
and images and videos are too big, the sensory data needs to
be compressed. In this work, we study deep semantic coding
methods at the wireless edge following the wireless image
retrieval scheme [9]. In particular, in order to make use of the
prior knowledge from the database to reduce the bandwidth,
we focus on the semantic compression method combining
the large-scale retrieval technologies, including inverted index
and approximate nearest neighbor (ANN) search.

We propose two coding methods for the wireless image
retrieval. The first one is the deep unsupervised coding (DUC)
method, which is based on the conventional clustering-based
inverted index, while the second one is the deep semantic
coding (DSC) method, which is based on a inverted semantic
index. In both two methods, the query image from an edge
device is compressed into feature vector via convolutional
neural network (CNN). And then the vector is quantized by
an ANN search method product quantization (PQ). PQ has
been recognized as the most popular solution in ANN search
and inverted index for retrieval task [10]–[12]. When the
large-scale database requires extortionate memory size, PQ
is applied to compress the data into binary code. Considering
that the goal of reducing memory size is consistent with
bandwidth constraints, we apply PQ to the source coding
of wireless image retrieval. Note that neither the memory
savings nor the bandwidth reduction of the wireless retrieval
task requires reconstruction of the source image. Thus lossy
compression is acceptable in wireless image retrieval. Back
to the point, the difference between DUC and DSC is the
generation of code head based on inverted index which is
used to locate the searched partitions fast and generate the
candidate list for retrieval. The code head in DSC is semantic
guided, which is proved to outperform the DUC method by
simulation results. Our contributions can be summarized as
follows

(1) We propose a semantic compression scheme aiming at
wireless image retrieval for IoT, which combines the
large-scale retrieval technologies, including inverted se-
mantic index and product quantization, with the semantic
coding operation.

(2) We extract feature from a source image via CNN, and
then introduce a semantic guided code head followed by
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Fig. 1. Framework of wireless image retrieval based on deep semantic coding (DSC)

PQ code. This DSC method allows the wireless channel
to transmit query image with a limited bandwidth and
robust retrieval performance.

(3) We perform evaluations under different signal-to-noise
ratios (SNRs) and different database scales. The result
proves that the DSC method can not only improve the
retrieval accuracy but also limit the bandwidth.

Notations: Symbols for vectors (lower case) and matrices
(upper case) are in boldface. Symbols for sets and models
are in calligraphy. For a vector a, am and ‖a‖2 denote its
mth entry and l2-norm. {am} denotes a set formed by am.
N (0, σ2IB) denotes the the additive white Gaussian noise
with the zero mean and the variance being σ2.

II. SYSTEM MODEL

In wireless image retrieval at the edge [9], it is divided into
three stages: learning codebook from the database, coding
and transmitting the image captured by the edge device and
retrieving the received images in the server database.

In the first stage, the pre-processing is performed on the
database. Firstly, each database image D is extracted into
feature d via CNN model Mf . The details of Mf are
introduced in (10). Then in DUC, all d are clustered into K
partitions by k-means, and the centroids of these partitions are
recorded as the codewords ci, i = 1, 2 . . . ,K in the codebook
C [10], [11]. While in DSC, the database is divided according
to semantic labels via ResNet101 which is expressed as Mc.
This process is formulated as

p =Mc(D),p ∈ RK , (1)

where pi represents the possibility that D relates to the i-th
semantic label. The partition index i that D belongs to is
expressed as

i = argmax
i
p. (2)

Then the codeword ci of the ith partition needs to be
computed to make up the codebook C by

ci = argmin
c

N∑
j=1

∥∥dj − c∥∥22, c ∈ Wi , {d1,d2 . . . ,dJ},

(3)
where J is the amount of the data in the ith partition Wi ,
{dj}. Secondly, all d of the ith partition are used to learn the
sub-codebooks via PQ. PQ divides a vector d ∈ RF into M
sub-vectors

d = [s1, s2 . . . , sM ], sm ∈ R
F
M , (4)

and each sub-vector is clustered into L-bit sub-codewords
{r1m, r2m . . . , r2

L

m }, rxm ∈ R F
M . The sub-codebook of the mth

sub-vector in the ith partition is given by

Rim , {ri,1m , ri,2m . . . , ri,2
L

m }. (5)

Thus the sub-codebooks of the ith partition generated by PQ
are expressed as

Ri , {Ri1,Ri2 . . . ,RiM}. (6)

All the M ∗K sub-codebooks are represented as R , {Ri}.
Generally, L is set to be 8, hence each feature is quantized
to a code e ∈ RM in M bytes. Finally, the codebook C and
sub-codebooks R are fed back to the edge device in the initial
phase. The prior information stored in the codebooks can help
reduce the bandwidth in the following coding stage.

In the second stage, the query image Q captured by edge
device is compressed and quantized into binary code. We
propose DUC method and DSC method for the coding of
query image, and the details of them are introduced in section
III. After coding, the quantized code is transmitted over
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Algorithm 1 DSC scheme
1: Input: Q,D,M,Mf ,Mc

2: (Pre-processing)
3: Obtain d from D via (10).
4: Obtain codebook C via (3).
5: Obtain sub-codebooks R via (4)(5)(6).
6: (Deep Semantic Coding)
7: Obtain q from Q via (10).
8: Obtain code head h via (11).
9: Obtain PQ code e via (6).

10: Obtain total code x via (12).
11: (Wireless Image Retrieval)
12: Transmit x via (7).
13: Decoding y according to C and R.
14: Recover feature q̂ via (13).
15: Retrieve q̂ via (14) or (15).
16: Output: D̃ related to Q

wireless channel. This transmission is lossy limited by the
finite channel capacity and there is no need to reconstructing
the original image for retrieval tasks. We evaluate the wireless
performance by additive white Gaussian noise (AWGN) chan-
nel in this paper. For an input B-dimensional vector x ∈ RB ,
the output of the channel model y ∈ RB is

y = x+ η, (7)

where η ∼ N (0, σ2IB) is the white Gaussian noise compo-
nent with variance σ2.

In the third stage, the compressed vector received by the
receiver is compared with the vectors from the candidate list.
The candidate list is generated by inverted index to avoid
exhaustive searching. Through the comparison, the vectors are
ranked to find the nearest neighbors, thus the target persons,
vehicles or scenes are obtained. We evaluate the transmission
and retrieval performance for different channel SNRs given
by P

σ2 and different database scales.

III. DEEP SEMANTIC CODING

In this section, the details of DSC at the second stage
are introduced, including the feature extraction via CNN, the
generation of semantic guided code head and the quantization
compression via PQ.

A. Feature extraction via CNN

Following the state-of-the-art image retrieval method [13],
we apply the generalized-mean (GeM) pooling layer to the
ResNet101 and train on the dataset used in [14] for feature
extraction. If we define fn as the nth element of the pooling
layer output vector f andXn as the corresponding input array
to fn, the result of generalized-mean (GeM) pooling layer is
given by

fn =

(
1

|Xn|
∑
x∈Xn

xpn

) 1
pn

, (8)

where the computation is equal to max pooling when pn →∞
and average pooling for pn = 1. The pooling parameter pn
can be manually set or learned by back-propagation [13]. We
train the ResNet101 using Adam with learning rate 10−6,
momentum 0.9 and a batch size of 5 training tuples [13].
The last layer of the network is an l2-normalization layer
so that similarity between two images can be evaluated with
inner product. In this work, all training images are resized to
362 × 362 and the output feature size is 2048. The training
input consists of image pairs (Q,D) and label l(Q,D) ∈
{0, 1} declaring whether the image pair is matched. The loss
function is defined as

L(Q,D) =

{
1
2

∥∥q − d∥∥2
2
, l(Q,D) = 1,

1
2 (max{0, τ −

∥∥q − d∥∥
2
)2, l(Q,D) = 0,

(9)
where q is the `2-normalized GeM vector of image Q, and
τ is a threshold to make sure that the distance between the
unrelated pairs is large enough so as to be ignored by the
loss. The trained feature extraction model is represented as
Mf . The feature q of query image Q can be extracted via

q =Mf (Q). (10)

B. Semantic guided code head

After feature extraction, the quantization of the feature
vectors is needed due to the bandwidth limitation. In this
work, we consider two coding methods, including DUC
method and DSC method.

In DSC, the classification possibilities of query image Q
are predicted via (1). Then the top-5 most possible semantic
labels are determined by

{i1, i2 . . . , i5} = arg
5

max
i
q. (11)

The experience value 5 is inferred from the property that the
top-5 accuracy of ResNet is up to 94.75%. These 5 indices
can be stored in 50 bits, because there are 1k labels, which
can be covered by 10 bits with 210 > 1000 > 29. And 50
bits can be covered by 7 bytes. Thus we generate the 7-
byte semantic code head h via (1) and (11) which stores
semantic information and can avoid exhaustive searching
during retrieval. In DUC, we record the 5 nearest centroid
indices in code head h correspondingly. Note that 5 is not
the best value for DUC as shown in Fig. 2. However the best
value is uncertain. We determine the code head size as 5 in
DUC for comparison.

C. Quantized PQ code

For quantization, we employ PQ [15] to compress the
feature vector q into binary code. Given the top-5 in-
dices {i1, i2 . . . , i5} in the code head h, the codewords
{ci1 , ci2 , . . . , ci5} and sub-codebooks {Ri1 ,Ri2 . . . ,Ri5}
can be selected. According to each sub-codebook, a code e in
M -bytes can be obtained. M is generally set to be 8. Larger
M will improve the retrieval accuracy but reduce the transmit
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Fig. 2. Different sizes of code head

bandwidth. Thus the total code in 7 + 8 ∗ 5 = 47 bytes can
be expressed as

x , [h, e1, e2, . . . , e5]. (12)

During the retrieval in the ith partition on edge server,
according the codebook C and the sub-codebooks Ri, the
query feature q can be approximated by a sum

q̂i , ci + [ri,q1 , ri,q2 . . . , ri,qM ], (13)

where ci is obtained by choosing the codeword out of C
according to the indices from h and the sub-codewords
rim are gotten from Ri by the indices recorded in the
corresponding e. Similarly at the pre-processing stage, the
database features ds in the ith partition are also quantized into
d̂ , ci + [ri,d1 , ri,d2 . . . , ri,dM ]. The candidate list for retrieval
is consist of the points from the 5 database partitions indexed
by h. Thus, the distance from query q to the point d in the
candidate list is approximated by∥∥q − d∥∥2

2
≈
∥∥q̂i − d̂∥∥2

2
=

M∑
m=1

∥∥ri,qm − ri,dm ∥∥22, (14)

while the cosine similarity between the query and the point
in database is represented as

s(q,d) ≈ s(q̂i, d̂)

=

∥∥ci∥∥2
2
+
∑M
m=1 (

〈
cim, r

i,q
m

〉
+
〈
cim, r

i,d
m

〉
+
〈
ri,dm , ri,qm

〉
)√∑M

m=1

∥∥cim + ri,qm
∥∥2
2

∑M
m=1

∥∥cim + ri,dm
∥∥2
2

.

(15)
Typically, since the codeword c and 2L sub-codewords r are
pre-obtained and constant, we can pre-compute these dot-
products and norms in (14) and (15), and store the results
in lookup tables at the pre-processing stage [10]. Therefore,
these terms can be reused directly from the lookup tables
during the retrieval procedure. Owing to the lookup tables, the
comparison and ranking can speed up greatly. The complexity
for each comparison is decreased from O(F 2 + F − 1) to
O(M) in (14) and to O(4M + 4) in (15).

IV. SIMULATION RESULTS

In this section, we evaluate the transmission and retrieval
performance of DUC and DSC approaches.

A. Datasets

Firstly, we introduce the standard image retrieval bench-
marks, based on which we carry out the experiments.

1) Oxford5k: contains 5062 building images captured in
Oxford with 55 query images. Each query has 6 to 221
target images. The differences between target images and
query images include perspective conversion, light change,
occlusion, etc.

2) Paris6k: is consist of 6412 architecture images from
Paris, which also has 55 query images. The ground-truth
amount of each query counts 51 to 289. The challenges are
similar to the Oxford5k dataset.

3) Holidays: has 1491 personal holiday pictures with 500
query images. Each query has 2 to 13 target images. The
retrieval difficulty is relatively low.

4) Flickr100k and Flickr1M: are distractors generally
combined with the datasets mentioned above, which contain
100 thousand and 1 million images from Flickr, respectively.

B. Different size of code head

For the inverted index of edge server database, we consider
the cluster-based IVF [16], IMI [10] and IVF+G+P [11] for
DUC and a inverted semantic index based on classification
for DSC. We perform experiments on different datasets as
shown in Fig. 2. In order to reach the nearly 90% recall,
the best number of indices in the code head are {5, 5, 5} in
DSC, {30, 30, 5} in DUC-IVF and {−, 200, 100} in DUC-
IMI. Therefore, it is difficult to set the code head size to a
certain number in DUC, which limit the application of DUC
in practice. The robustness of DSC is owing to the high top-5
accuracy of ResNet101.

C. Different SNRs of wireless channel

For the DUC and DSC schemes we consider different
channel SNRs for transmission and retrieval, varying from
−20 dB to 5 dB. In the testing phase, we send both the
original 2048-dimensional feature q and the quantized PQ
codes e to the AWGN channel, adding the 7 bytes centroid
code head in DUC and the 7 bytes semantic guided code head
in DSC. Fig. 3 proves the effectiveness of PQ Compression
with only slight drop on the retrieval accuracy mAP. And
the addition of semantic code head in DSC improves the
performance significantly.
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Fig. 3. Different SNRs on AWGN channel, where B represents the channel
bandwidth.

D. Experiments on large-scale datasets

In this section, we evaluate DSC method and DUC method
at the most ideal wireless channel without noise. The retrieval
performance is evaluated on large-scale image retrieval bench-
marks by mAP and Recall. The results in Tab. I reveal that
our DSC method can really improve the retrieval performance
with limited bandwidth.

TABLE I
EXPERIMENTS ON LARGE-SCALE DATASETS

Index M Head mAP Recall R@1 R@10 R@100
Oxford105k

DUC-G+P [11] 2048 7 0.535 0.581 0.059 0.369 0.566
DUC-IVF [16] 2048 7 0.744 0.874 0.059 0.385 0.761
DUC-IMI [10] 2048 7 0.549 0.574 0.059 0.340 0.566
DSC 2048 7 0.756 0.939 0.059 0.406 0.776
DUC+PQ [15] 40 - 0.545 0.989 0.054 0.256 0.646
DUC-IVF+PQ [15] 40 7 0.485 0.874 0.027 0.159 0.635
DUC-IMI+PQ [10] 40 7 0.507 0.574 0.059 0.299 0.559
DSC+PQ 40 7 0.702 0.939 0.041 0.340 0.790

Oxford1M
DUC-G+P [11] 2048 7 0.627 0.726 0.059 0.395 0.673
DUC-IVF [16] 2048 7 0.676 0.803 0.059 0.385 0.689
DUC-IMI [10] 2048 7 0.482 0.533 0.059 0.291 0.505
DSC 2048 7 0.719 0.939 0.059 0.399 0.735
DUC+PQ [15] 40 - 0.133 0.798 0.030 0.078 0.198
DUC-IVF+PQ [15] 40 7 0.102 0.803 0.004 0.013 0.161
DUC-IMI+PQ [10] 40 7 0.399 0.533 0.059 0.239 0.445
DSC+PQ 40 7 0.493 0.939 0.028 0.178 0.623

V. CONCLUSION

In this work, we have studied the semantic coding method
for wireless image retrieval. We have combined the inverted
index and the source compression via the codebook of the
database. Simulation results have demonstrated that the DSC
method we propose can improve the retrieval performance
and reduce the transmission bandwidth.
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