
Latency Optimization for Heterogeneous Task
Offloading in Cooperative MEC Network

Zhiwei Jiang, Yijin Pan and Chenhao Qi
School of Information Science and Engineering, Southeast University, China

National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
Email: {jiangzw, panyj, qch}@seu.edu.cn

Abstract—In this paper, we consider a cooperative mobile
edge computing (MEC) network where both the user equipments
(UEs) and the MEC server can help with the task computing.
Multiple heterogeneous tasks of different sizes for each UE are
separately offloaded to the nearby UEs and MEC server’s central
processing unit and graphics processing unit for processing. Tasks
of the same type are transmitted sequentially so that the waiting
latency is required for offloading transmission and computation.
We aim to minimize the maximum latency of UEs for processing
all the tasks while ensuring that all tasks are successfully
transmitted and processed. To solve the formulated non-convex
problem, an iterative algorithm named directed mutation process
based on discrete differential evolution is proposed. Simulation
results are presented to verify the performance gain provided by
the proposed algorithm.

Index Terms—Latency optimization, mobile edge computing,
resource allocation, task offloading.

I. INTRODUCTION

Emerging applications such as augmented reality (AR) and
autonomous driving raise the requirements for data processing
and graphics rendering capability of the terminal devices [1].
To meet these challenges, mobile edge computing (MEC) has
been developed by ETSI to equip high-speed computation unit
at the network edge [2], which can provide users with low-
latency network service [3].

Due to the potential attractive benefits, various researchers
have proposed efficient task offloading approaches in MEC
network. In [4], a basic three-node MEC system is proposed
to improve the computation capacity and energy efficiency. A
joint optimization paradigm for task-driven resource assign-
ment is proposed to optimize the resource allocation strat-
egy [5]. In [6], a fog-computing cloud radio access network is
proposed to include three tiers of computational service. The
superiority of the network in terms of the delay performance
is validated [4]–[7].

Meanwhile, with the rapid development of Internet of
things, a fully-connected intelligent world is becoming a
reality. If we merely rely on the limited computing resources
at the edge of the access network, the tasks generated by
numerous of applications may not be finished in time [8]. At
the same time, as we enter into the post-Moore era, more
and more chips are equipped with powerful computational
capacity to obtain higher performance [9]. It is easily happened
that some devices are idle when other devices are processing
tasks overloaded. In light of the rapid development of central

processing units (CPUs) and graphics processing unit (GPUs)
equipped by user equipments (UEs), collaborative computing
is considered as a promising approach to enhance the MEC
service [10]. In cooperative computation, the computing re-
sources within UEs can be shared via device-to-device (D2D)
communications. In [11], the integrated optimization problem
of D2D communications and MEC is formulated as a mixed
integer nonlinear problem, where cooperative approaches have
been dedicated to improving the power efficiency. And by
enabling bidirectional computation sharing among the users,
the cooperative computing design can significantly reduce
the system energy consumption [12]. In [13], the penalty of
unaccomplished tasks is included into the system cost. Since
MEC server’s limited computing resources, many tasks need to
be queued for processing. In [14], the service queue is modeled
as M/G/n/∞ queue model. And in [15], the offloading
probability and transmit power of devices are optimized to
minimize the average weighted network cost by using M/M/1
and M/M/c model.

However, the existing works do not fully consider the het-
erogeneity of multiple tasks, which requires different chips for
processing. In addition, the service queue is usually modeled
as a stochastic process, and the queuing delay of each task in
sequential transmission and sequential processing are not well
addressed. In this context, we consider a cooperative MEC
network composed of multiple UEs and a base station (BS),
where a MEC server is deployed at the BS. UEs can offload
their tasks locally, to the MEC server, or to other UEs via
D2D links. All devices are equipped with CPU and GPU to
process different types of tasks in different ways. Considering
the heterogeneity of tasks, disjoint transmission channels are
allocated for them separately. Tasks of the same type are sent
in a sequential manner. As a result, the total latency includes
not only transmission and processing latency, but also latency
of queuing to wait for processing, where the latter are usually
ignored in current work. The formulated problem aims to
minimize the maximum latency of all devices. Meanwhile,
all tasks can be successfully transmitted and processed. An
iterative algorithm named directed mutation process based
on discrete differential evolution (DMP-DDE) is proposed to
solve this mixed integer optimization problem. Compared with
local offloading and random offloading, the simulation results
are provided to validate the latency performance improvement
obtained by the proposed system.

979-8-3503-1114-3/23/$31.00 ©2023 IEEE

20
23

 IE
EE

 9
7t

h
V

eh
ic

ul
ar

 T
ec

hn
ol

og
y

C
on

fe
re

nc
e

(V
TC

20
23

-S
pr

in
g)

 |
97

9-
8-

35
03

-1
11

4-
3/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

V
TC

20
23

-S
pr

in
g5

76
18

.2
02

3.
10

19
99

66

Authorized licensed use limited to: Southeast University. Downloaded on August 23,2023 at 12:10:46 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Network model.

II. PROPOSED SYSTEM MODEL

A. Network Model

As shown in Fig. 1, we consider a cellular network with
one BS equipped with a MEC server to serve N UEs. Let
N , {0, 1, 2, · · · , N} denotes the set of devices, where device
0 is the MEC server. UEs can connect to each other through
D2D links. All devices have CPUs and GPUs with different
computing capabilities.

Apart from the MEC server, UEs with abundant computa-
tion can also help to compute tasks from other UEs. The task
model in our work has given fully consideration of the task
variation and heterogeneity. We divide UE’s tasks into two
categories, including CPUs tasks and GPUs tasks.

Given the limited cores of CPUs, it is assumed that the CPU
of all UEs process subtasks sequentially. For the CPU tasks
generated by UE n, we define vector an as

an ,
[
a1,n, a2,n, · · · , aMn,n

]T
(1)

where Mn is the total number of all the indivisible CPU
subtasks of UE n. The element am,n denotes the data size of
the CPU subtasks m generated in UE n with 1 ≤ m ≤ Mn.
Let M denote the maximum number of CPU subtasks among
the UEs, i.e., M , max{mn,∀1 ≤ n ≤ N}. Without loss
of generality, it is assumed that the subtasks are sorted in
the descending order of data size, i.e., a1,n > · · · > aMn,n.
Therefore, we have the CPU subtask matrix defined as

A ,

[
a1 · · · an · · · aN

0M−M1
· · · 0M−Mn

· · · 0M−MN

]
(2)

where 0M−Mn
is a column vector with M −Mn zeros.

Due to the different architecture of GPUs, that is, many
small cores enabling the parallel acceleration computation,
some tasks require GPU processing. For the GPU tasks
generated by UE n, we define vector bn as

bn ,
[
b1,n, b2,n, · · · , bKn,n

]T
(3)

where Kn is the total number of all GPU tasks of UE n.
The element bk,n denotes the data size of the GPU tasks
k generated in UE n with 1 ≤ k ≤ Kn. Let K denote
the maximum number of GPU tasks among the UEs, i.e.,
K , max{kn,∀1 ≤ n ≤ N}. Therefore, we have the GPU
task matrix defined as

B ,

[
b1 · · · bn · · · bN

0K−K1
· · · 0K−Kn

· · · 0K−KN

]
(4)

where 0K−Kn is a column vector with K −Kn zeros.
For UE j’s offloading decision of CPU subtasks and GPU

tasks to device i, where 0 ≤ i ≤ N and 1 ≤ j ≤ N , we define
vector xj,i and yj,i as

xj,i ,
[
xji,1, · · · , x

j
i,m, · · · , x

j
i,Mj

]
(5a)

yj,i ,
[
yji,1, · · · , y

j
i,k, · · · , y

j
i,Kj

]
(5b)

where xji,m = 1 denoting the mth subtask of UE j is offloaded
to device i’s CPU for processing, and yji,k = 1 denoting
the kth task of UE j is offloaded to device i’s GPU for
processing. Thus, we have UE j’s offloading decision of CPU
subtasks matrix defined as Xj ,

[
xT
j,0, · · · ,xT

j,i, · · · ,xT
j,N

]T
.

Similarly, we define a matrix Yj consisting of N + 1 column
vector yj,i, which denotes UE j’s offloading decision of GPU
tasks. Then the offloading decision of all UEs can be denoted
as X = {X1, · · · ,XN} and Y = {Y1, · · · ,YN}.

Therefore, UE j’s task offloading results can be represented
as

cj = Xjaj , gj = Yjbj (6)

where cj is a column vector with size N + 1. Similarly, the
GPU task offloading decision can be presented as gj .

In fact, we assume that the devices adopt frequency division
duplex to enable transmitting and receiving tasks simultane-
ously.

B. Tasks Offloading

In the uplink transmission, UEs utilize frequency division
multiple access to offload tasks to multiple devices simultane-
ously. With the given offloading decision Xj and Yj , we let
set Cj denote the set of devices that UE j offloads tasks to. For
the device i ∈ Cj , we have ‖xj,i‖0 6= 0 or ‖yj,i‖0 6= 0. Let
lj denote the number of devices that UE j offloads tasks to,
i.e, the cardinality of set Cj . Then, the total uplink bandwidth
B is equally divided into lj“offloading channel” for CPU and
GPU task offloading, every channel with a bandwidth of B/lj .

Meanwhile, a UE may have both CPU subtasks and GPU
tasks offloading to the same device, so that disjoint bandwidth
is allocated for GPU task offloading and CPU task offloading.
To enhance task transmission, we propose a task size pro-
portional allocation method to split the bandwidth for CPU
subtasks and GPU tasks. According to (6), the ith elements
of cj and gj , denoted as ci,j and gi,j , represent the total
CPU subtasks and GPU tasks of UE j offloaded to device
i, respectively. Then, with the given offloading decision Xj

and Yj , the bandwidth for UE j offloading CPU subtasks to
device i is given by

Authorized licensed use limited to: Southeast University. Downloaded on August 23,2023 at 12:10:46 UTC from IEEE Xplore. Restrictions apply.

Bc
j,i(X ,Y) =

Bci,j

lj (ci,j + gi,j)
. (7)

And the left bandwidth for offloading GPU tasks is

Bg
j,i(X ,Y) =

Bgi,j

lj (ci,j + gi,j)
. (8)

The channel fading coefficient between UE j and device i is
hi,j . The channel noise power spectral density is N0 mW/Hz.
Then, the required received power on unit bandwidth for
device i with a SNR threshold γi is given by pj,i = γiN0/hi,j .
Let Pj denote the transmission power of UE j. Then, the
required power for receiving CPU subtasks at device i is given
by

Bc
j,i(X ,Y)pj,i = Bc

j,i(X ,Y)
γiN0

hi,j
. (9)

If Bc
j,i(X ,Y)pj,i ≤ Pj , UE j can offload the CPU subtasks

to device i without distortion; otherwise, this channel is
infeasible.

Similarly, the required power for receiving GPU tasks at
device i is given by

Bg
j,i(X ,Y)pj,i = Bg

j,i(X ,Y)
γiN0

hi,j
. (10)

The feasibility of GPU task offloading on this channel can be
verified in the similar way.

Therefore, the offloading rate from UE j to device i’s CPU
is

Cc
j,i(X ,Y) = Bc

j,ilog2

(
1 +

Pj

N0Bc
j,i

)
. (11)

And the offloading rate from UE j to device i’s GPU is

Cg
j,i(X ,Y) = Bg

j,ilog2

(
1 +

Pj

N0B
g
j,i

)
. (12)

III. PROBLEM FORMULATION AND ANALYSIS

In this paper, a multiuser collaborative task offloading
scheme is investigated. By optimizing the offloading decision,
the total latency T of the entire system can be minimized while
ensuring that all tasks are completed. Then, the optimization
problem can be formulated as

min
{X ,Y}

T (13a)

s.t. xij,m, y
i
j,k ∈ {0, 1},


∀i ∈ N\{0}
∀j ∈ N
∀m ∈Mi

∀k ∈ Ki

(13b)

N∑
j=1

xij,m = 1,

{
∀m ∈Mi

∀i ∈ N\{0}
(13c)

N∑
j=1

yij,k = 1,

{
∀k ∈ Ki

∀i ∈ N\{0}
(13d){

Pj ≥ Bc
j,ipj,i

Pj ≥ Bg
j,ipj,i,

{
∀j ∈ N\{0}
∀i ∈ Cj

(13e)

where Mi , {1, 2, · · · ,Mi} and Ki , {1, 2, · · · ,Ki}.
(13b) guarantees that all tasks cannot to be partitioned dur-
ing offloading. (13c) and (13d) guarantees that every task
only needs and must be processed by a single device. (13e)
guarantees that the leveraged offloading channels are feasible.
The problem aims to minimize T by optimizing offloading
decisions {X ,Y}.

IV. COOPERATIVE LATENCY ANALYSIS
Obviously, T is equal to the maximum latency of all devices

in the system to complete the task. To simplify the timing
analysis, we assume that the CPU and the GPU of the same
device can work simultaneously without affecting each other,
so that the latency of device i is equal to the greater of the two:
the time of its CPU finishing subtask processing and that of
GPU’s. The former is denoted as T c

i , and the latter is T g
i . Due

to the different computing capabilities of MEC server and UEs,
it is assumed that tasks are processed sequentially. Meanwhile,
we assume both the MEC server’s CPU and GPU reserve a
thread for each UE, so that tasks offloaded from different UEs
can be processed in parallel. Thus, we have T c

0 , max
{
T c
j,0

}
and T g

0 , max
{
T g
j,0

}
, ∀j ∈ N\{0}, where T c

j,0 is the latency
for MEC server to process all CPU subtasks offloaded from
UE j, and T g

j,0 is the latency for MEC server to process all
GPU tasks offloaded from UE j. Then T can be denoted as

T = max
{
T c
j,0, T

g
j,0, T

c
j , T

g
j

}
,∀j ∈ N\{0}. (14)

We assume that the size of processing results is usually
small enough so that the latency for downloading them can
be neglected. Therefore, T c

i and T g
i roughly include the

task transmission latency and the latency of processing tasks.
According to (5a) and (5b), if xji,m = 1, the transmission
latency of am,j can be calculated as

T c,1
m,j =

∑m
e=1 x

j
i,eae,j

Cc
j,i(X ,Y)

(15a)

considering that tasks of the same category are transmitted
sequentially via the same channel. Similarly, if yji,k = 1, the
transmission latency of bk,j is

T g,1
k,j =

∑k
e=1 y

j
i,ebe,j

Cg
j,i(X ,Y)

. (15b)

To simplify the calculation, V1,i and V2,i are used to quan-
tify the computing capabilities of device i’s CPU and GPU
respectively. And V1,0 and V2,0 are the computing capabilities
of a single thread in MEC server’s CPU and GPU.

For each device, the whole process of executing tasks is
regarded as a queuing model under the first-input first-output
criteria. Due to the difference among the process model of
UEs and MEC server, the methods for calculating delays are
given respectively.

A. Timing analysis for UE computation
The timing of UE j’s CPU subtask execution is shown in

Fig. 2. Firstly, UE j processes its local tasks in ascending
order of data size sequentially. The processing latency for
UE j to complete its local CPU subtasks and GPU tasks are
respectively given by

Authorized licensed use limited to: Southeast University. Downloaded on August 23,2023 at 12:10:46 UTC from IEEE Xplore. Restrictions apply.

(a) Overall timing

(b) Dc,L
j < tcj,1 (c) Dc,L

j > tcj,1

Fig. 2. The timing of UE j’s CPU subtask execution. (a) denotes the overall
timing. (b) and (c) denote the two timings of executing the first offloaded
subtasks.

Dc,L
j =

∑Mj

m=1 x
j
j,mam,j

V1,j
, (16a)

Dg,L
j =

∑Kj

k=1 y
j
j,kbk,j

V2,j
. (16b)

Then, UE j processes tasks from other UEs accord-
ing to the arriving order. The arriving time of the first
CPU subtask is tcj,1 = min

{
T c,1
m,ix

i
j,m,∀xij,m 6= 0

}
, where

1 ≤ i ≤ N . Similarly, we have the following arriving time as
tcj,2, · · · , tcj,e, which are determined by the ascending order of{
T c,1
m,ix

i
j,m,∀xij,m 6= 0

}
, and e =

N∑
i6=j

‖xi,j‖0. We denote the

data size of the subtask arrive at tcj,k as π
(
tcj,k

)
. Similarly,

we have the arriving time of GPU tasks processed by UE j as
tgj,1, · · · , t

g
j,f , which are determined by the ascending order of{

T g,1
k,i y

i
j,k,∀yij,k 6= 0

}
, and f =

N∑
i 6=j

‖yi,j‖0. The last arriving

GPU task is denoted as π
(
tgj,f

)
.

To determine the time of finishing the first received
CPU subtask, we need to compare tcj,1 with Dc,L

j . Let
∆tc,j1 , Dc,L

j − tcj,1. Then the waiting delay for processing
π
(
tcj,1
)

is
∆T c,j

1 = ∆tc,j1 ε
(

∆tc,j1

)
(17)

where ε(t) is a sign function. If t < 0, we have ε(t) = 0;
otherwise, we have ε(t) = 1. Therefore, the moment when
UE j’s CPU completes processing π

(
tcj,1
)

is

tc,Hj,1 = tcj,1 + ∆T c,j
1 +

π
(
tcj,1
)

V1,j
. (18)

Similarly, the kth arriving CPU subtask can be denoted as
π
(
tcj,k

)
. We can express the difference between tc,Hj,k−1 and

tcj,k as

∆tc,jk = tc,Hj,k−1 − t
c
j,k, k ∈ {2, · · · , e}. (19)

Then the waiting delay for processing π
(
tcj,k

)
is

∆T c,j
k = ∆tc,jk ε

(
∆tc,jk

)
. (20)

Therefore, the time that UE j’s CPU completes processing
π
(
tcj,k

)
is

tc,Hj,k = tcj,k + ∆T c,j
k +

π
(
tcj,k

)
V1,j

. (21)

The time that UE j completes processing all CPU subtasks is

T c
j = tc,Hj,e = tcj,e + ∆T c,j

e +
π
(
tcj,e
)

V1,j
. (22)

Similarly, T g
j can be calculated by

T g
j = tg,Hj,f = tgj,f + ∆T g,j

f +
π
(
tgj,f

)
V2,j

(23)

where ∆T g,j
f denoting the waiting delay for processing

π
(
tgj,f

)
can be computed by (24). In fact, we have tgj,f =

max
{
T g,1
k,j y

i
j,k,∀yij,k 6= 0

}
, which denotes the time that

π
(
tgj,f

)
arrives. We also have

∆T g,j
f = ∆tg,jf ε

(
∆tg,jf

)
(24)

where ∆tg,jf = tg,Hj,f−1− t
g
j,f . tg,Hj,f−1 denotes the moment when

UE j completes processing (f −1)th GPU task. When f = 1,
∆tg,j1,1 is calculated as

∆tg,j1,1 = Dg,L
j − tgj,1. (25)

B. Timing analysis at MEC server

MEC server processes tasks from the same UE according
to the arriving order. We have the arriving time of CPU
subtasks from UE j as T c,1

1,j , · · · , T
c,1
s,j , where s = ‖xj,0‖0.

Denote the data size of the subtask arrive at time T c,1
1,j as a01,j .

Similarly, we have the arriving time of GPU tasks from UE j
as T g,1

1,j , · · · , T
g,1
u,j , where u = ‖yj,0‖0.

Therefore, the time when MEC server’s CPU completes
processing a01,j is

tc,1j,0 = T c,1
1,j +

a01,j
V1,0

. (26)

Similar to the aforementioned calculation process, T c
j,0 can be

calculated as

T c
j,0 = T c,s

j,0 = T c,1
s,j +

a0s,j
V1,0

+ ∆T c,0
1,s−1. (27)

Note that ∆T c,0
1,s−1 denoting the waiting delay for processing

a0s,j is calculated by

∆T c,0
1,s−1 = ∆tc,01,s−1ε

(
∆tc,01,s−1

)
(28)

where ∆tc,01,s−1 = T c,s−1
j,0 −T c,1

s,j . T c,s−1
j,0 denotes the time that

MEC server’s CPU completes processing (s − 1)th subtasks
from UE j.

Similarly, T g
j,0 can be calculated by

T g
j,0 = T g,u

j,0 = T g,1
u,j +

b0u,j
V2,0

+ ∆T g,0
1,u−1. (29)

Authorized licensed use limited to: Southeast University. Downloaded on August 23,2023 at 12:10:46 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 DMP-DDE Algorithm

1: Initialize P , ε and Smax; Set the iteration number s = 0.
2: Initialize W(1,0) according to (30), and initialize
W(p,0),∀p 6= 1 randomly with (13e) satisfied.

3: while s ≤ Smax do
4: for p = 1 to P do
5: Calculate the objective T(p,s) obtained by W(p,s).
6: Generate V(p,s) via (31) and repeat the process to

ensure that (13c) and (13d) are satisfied.
7: Generate U(p,s) through binomial crossover as:
8: if randp,s[0, 1] ≤ ε or p = prand then
9: Set U(p,s) = V(p,s);

10: else
11: Set U(p,s) =W(p,s).
12: end if
13: if U(p,s) does not satisfy (13e) then
14: Set U(p,s) =W(p,s).
15: end if
16: Calculate the objective T̂(p,s) obtained by U(p,s).
17: if T̂(p,s) ≤ T(p,s) then
18: Set W(p,s) = U(p,s).
19: end if
20: end for
21: Tmin

(s) = min{T(p,s),∀1 ≤ p ≤ P}.
22: s← s+ 1.
23: end while

V. TASK OFFLOADING SCHEME BASED ON DDE

It can be verified that the formulated problem is non-convex
and hard to solve. To be specific, the allocated bandwidth
and processioning latency for task computation are highly
dependent on the offloading decision X and Y . Based on the
DDE algorithm [16], we develop the DMP-DDE algorithm to
solve (13).

In DMP-DDE algorithm, the set of candidate offloading
solutions are represented as a population with size P . Then,
the p-th candidate offloading solution at s-th iteration is
denoted as W(p,s) = {X(p,s),Y(p,s)}. Note that a proper
initialization method can help improving the convergence of
the algorithm. Thus, we initialize the first candidate solution
W(1,0) = {X(1,0),Y(1,0)} as local computation for all UEs. To
be more specific, we have

X(1,0) = {X0
1 , · · · ,X0

N}, Y(1,0) = {Y 0
1 , · · · ,Y 0

N}. (30)

The (i+ 1)th columns of both X0
i and Y 0

i are all ones, i.e.,
xi,i = 11×(N+1),yi,i = 11×(N+1), and other columns are
zeros. Then, X0

i and Y 0
i represent that all GPU tasks and CPU

tasks are processed locally. In this way, the local computation
solution is included in the set of candidate offloading solutions.

We predefine a maximum number of iterations Smax, and
the following processes are run iteratively until Smax iterations
is finished. In the mutation process of the algorithm, the
difference between two randomly selected candidate solutions
W(i,s) and W(j,s) are added to the first candidate solution

W(1,s) to generate a mutation solution. To be specific, the
mutation solution of s-th iteration is

V(p,s) = mod2(W(1,s) + (W(i,s) −W(j,s))) (31)

where mod 2(·) is introduced to ensure that the solutions
satisfy (13b).

Then a crossover operator ε is introduced to combine the
mutation solution V(p,s) with the candidate solution W(p,s) so
as to generate a trial solution U(p,s). Thereafter, a selection
process is applied to compare the objective function value of
both candidate solutions and trial solutions to determine who
can survive in the next iteration.

The above procedure is summarized in Algorithm 1 named
as the DMP-DDE algorithm. Practically, all UEs send signals
to the BS, including the information of tasks to be offloaded.
The proposed algorithm is conducted in the central MEC
server to obtain the offloading decisions, which are then sent
to all UEs.

VI. SIMULATION RESULTS

In this section, MATLAB is used as a simulation tool to
show the performance improvement obtained by the proposed
system and the DMP-DDE algorithm. We assume that the
computing capabilities of UE j’s CPU is V1,j ∈ [1, 400] KB/s,
and that of GPU is V2,j ∈ [10000, 200000] KB/s. The path loss
adopts the ITU-1411 model. Other simulation parameters are
presented in Table I.

TABLE I: SIMULATION PARAMETERS

Parameters Value
Number of UEs N 4∼49
Data size of CPU subtasks amn,n (0,2] KB
Maximum number of subtasks generated by a UE M 5∼15
Data size of GPU tasks bkn,n (0,2] MB
Maximum number of tasks generated by a UE K 5∼15
Distance between devices Di,j [1,50] m
Bandwidth B 20 MHz
Noise power density N0 -174 dBm/Hz
SNR threshold of each UE γj -85∼(-95) dBm
SNR threshold of BS γ0 -120 dBm
Transmit power of each UE Pj 0∼20 dBm
Transmit power of BS P0 40 dBm
Computing capability of each thread of MEC
server’s CPU V1,0

450 KB/s

Computing capability of each thread of MEC
server’s GPU V2,0

250000 KB/s

Fig. 3 shows the convergence of the proposed al-
gorithm. In Fig. 3, we fix N firstly, then generate
amn,n,M, bkn,n,K,Di,j , γj and Pj randomly to obtain the
corresponding scene, and then use the proposed algorithm to
optimize the scene for 10 times to test the performance of
the algorithm. It is shown that the total latency obtained by
the proposed algorithm decreases with increasing iterations
and the effectiveness has been verified. In addition, by com-
paring the best and the average of 10 times of optimization,
Fig. 3 shows that the performance gap between the average
convergence results and the best of ten are very small for all
considered cases. This also shows that the performance of the
proposed algorithm is quite stable and may avoid the local
optimum.

Authorized licensed use limited to: Southeast University. Downloaded on August 23,2023 at 12:10:46 UTC from IEEE Xplore. Restrictions apply.

0 5 10 15 20 25 30 35 40 45 50

s

0.05

0.1

0.15

0.2

T
/s

N=4

Average

Best

0 10 20 30 40 50 60 70

s

0

1

2

T
/s

N=24

Average

Best

0 10 20 30 40 50 60 70 80 90 100

s

0

5

T
/s

N=49

Average

Best

Fig. 3. Latency performance of the proposed algorithm.

5 10 15 20 25

N+1

0

0.2

0.4

0.6

0.8

1

1.2

T
/s

DMP-DDE Algorithm

DMP-DDE Algorithm without proposed bandwidth allocation

Locally offloading

Randomly offloading

Fig. 4. The latency of MEC system under different offloading decisions.

Fig. 4 shows the latency of MEC system under different
offloading decisions. In Fig. 4, the impact of the proposed
bandwidth allocation method is also investigated, and the
“Orange” line marked with “+” represents the DMP-DDE
algorithm with equally allocated bandwidth. It can be ver-
ified that the offloading decision obtained by the proposed
algorithm is significantly better than locally offloading and
randomly offloading. In addition, the task size proportional
allocation method proposed to split the bandwidth can also
reduce the system latency.

Fig. 5 shows the performance of the algorithm in general
scenarios. It shows that the gain decreases as the number of
devices increases, where the gain is the ratio of the optimiza-
tion amount to the latency of all tasks processed locally. It can
also be concluded that tasks with larger size of data, such as
GPU tasks, are better for local computing.

VII. CONCLUSION

In this work, we have investigated the latency optimization
for heterogeneous task offloading in the cooperative MEC
network. Tasks are divided into two categories, and they can
be offloaded locally, offloaded to the MEC server, or offloaded
to other UEs. We have considered the sequential transmission
of multiple tasks and their sequential and parallel processing.
We have analyzed the transmission and computation timing in
combination with the characteristics of CPUs and GPUs. To
solve this non-convex problem, we have proposed the DMP-
DDE algorithm. It is shown that the cooperative MEC network
and the DMP-DDE algorithm can significantly improve the
latency performance, and the task size proportional allocation
method proposed to split the bandwidth can also decrease the
latency.

4 6 8 10 12 14 16 18 20 22

N+1

55

60

65

70

75

80

85

90

G
a

in
/%

M=5

M=10

M=15

(a) K=5

4 6 8 10 12 14 16 18 20 22

N+1

30

35

40

45

50

55

60

65

70

75

80

G
a

in
/%

K=5

K=10

K=15

(b) M=5
Fig. 5. The performance of the algorithm in general scenarios.

ACKNOWLEDGMENT

This work is supported in part by National Natural Science
Foundation of China (NSFC) under Grants 62071116 and
62001107.

REFERENCES

[1] M. Chiang and T. Zhang, “Fog and IoT: An overview of research
opportunities,” IEEE Internet of Things J., vol. 3, no. 6, pp. 854–864,
Dec. 2016.

[2] E. T. S. I. (ETSI), “Mobile-edge computing—Introductory technical
white paper,” 2014.

[3] E. Baccarelli, M. Scarpiniti, P. G. V. Naranjo, and L. Vaca-Cardenas,
“Fog of social IoT: When the fog becomes social,” IEEE Network,
vol. 32, no. 4, pp. 68–80, Aug. 2018.

[4] X. Cao, F. Wang, J. Xu, R. Zhang, and S. Cui, “Joint computation and
communication cooperation for energy-efficient mobile edge comput-
ing,” IEEE Internet of Things J., vol. 6, no. 3, pp. 4188–4200, Jun.
2019.

[5] L. Wan, L. Sun, X. Kong, Y. Yuan, K. Sun, and F. Xia, “Task-driven
resource assignment in mobile edge computing exploiting evolutionary
computation,” IEEE Wireless Commun., vol. 26, no. 6, pp. 94–101, Dec.
2019.

[6] Y. Pan, H. Jiang, H. Zhu, and J. Wang, “Latency minimization for task
offloading in hierarchical fog-computing C-RAN networks,” in ICC 2020
- 2020 IEEE International Conference on Communications (ICC), Jun.
2020, pp. 1–6.

[7] J. Ren, G. Yu, Y. Cai, and Y. He, “Latency optimization for resource
allocation in mobile-edge computation offloading,” IEEE Trans. Wireless
Commun., vol. 17, no. 8, pp. 5506–5519, Aug. 2018.

[8] M. Liu and Y. Liu, “Price-based distributed offloading for mobile-
edge computing with computation capacity constraints,” IEEE Wireless
Commun. Lett., vol. 7, no. 3, pp. 420–423, Jun. 2018.

[9] N. S. Kim, D. Chen, J. Xiong, and W.-m. W. Hwu, “Heterogeneous
computing meets near-memory acceleration and high-level synthesis in
the post-moore era,” IEEE Micro, vol. 37, no. 4, pp. 10–18, Aug. 2017.

[10] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, “Collaborative
mobile edge computing in 5G networks: New paradigms, scenarios, and
challenges,” IEEE Commun. Mag., vol. 55, no. 4, pp. 54–61, Apr. 2017.

[11] Y. He, J. Ren, G. Yu, and Y. Cai, “D2D communications meet mobile
edge computing for enhanced computation capacity in cellular net-
works,” IEEE Trans. Wireless Commun., vol. 18, no. 3, pp. 1750–1763,
Mar. 2019.

[12] Q. Lin, F. Wang, and J. Xu, “Optimal task offloading scheduling for
energy efficient D2D cooperative computing,” IEEE Commun. Lett.,
vol. 23, no. 10, pp. 1816–1820, Oct. 2019.

[13] Y. Pan, C. Pan, K. Wang, H. Zhu, and J. Wang, “Cost minimization for
cooperative computation framework in MEC networks,” IEEE Trans.
Wireless Commun., vol. 20, no. 6, pp. 3670–3684, Jun. 2021.

[14] S. Guo, D. Wu, H. Zhang, and D. Yuan, “Queueing network model and
average delay analysis for mobile edge computing,” Int. Conf. Comput.,
Netw. Commun., pp. 172–176, 2018.

[15] L. Liu, Z. Chang, X. Guo, S. Mao, and T. Ristaniemi, “Multiobjec-
tive optimization for computation offloading in fog computing,” IEEE
Internet Things J., vol. 5, no. 1, pp. 283–294, 2018.

[16] Q.-K. Pan, L. Wang, and B. Qian, “A novel differential evolution algo-
rithm for bi-criteria no-wait flow shop scheduling problems,” Comput.
Oper. Res., vol. 36, no. 8, pp. 2498–2511, Oct. 2009.

Authorized licensed use limited to: Southeast University. Downloaded on August 23,2023 at 12:10:46 UTC from IEEE Xplore. Restrictions apply.

