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Abstract— Extremely large-scale multiple-input multiple-
output (XL-MIMO) is considered as a key technology for future
wireless communications. For near-field beam training in XL-
MIMO, the distance information is another important factor
aside of the angular information. The most recent work trains the
deep neural network (DNN) by performing beam training based
on far-field codebook that only contains angular information,
where the optimal angle and distance are independently
predicted. In this letter, the DNN is trained by performing beam
training based on near-field codebook that contains both angular
and distance information, where the optimal angle and distance
are jointly predicted with improved performance. We first
propose a deep learning-based near-field beam training (DNBT)
scheme. To further improve the beam training performance,
a DNBT with supplementary codewords (DNBT-SC) scheme is
proposed, where the supplementary codewords are selected to
perform beam training based on the probability vector acquired
in the DNBT scheme. Simulation results show that under the
same training overhead, the proposed schemes can achieve better
performance than the existing schemes.

Index Terms— Beam training, deep learning, near field,
extremely large-scale MIMO (XL-MIMO).

I. INTRODUCTION

FOR the sixth generation (6G) wireless communications,
the extremely large-scale multiple-input multiple-output

(XL-MIMO) with much more antennas than massive MIMO
in the fifth generation (5G) wireless communications has
been considered as a key enabling technology [1], [2]. The
spectral efficiency can be significantly improved through
MIMO beamforming based on the XL antenna array equipped
at the base station (BS).

For 5G wireless communications, codebook-based beam
training with its advantage of fast generating beams is widely
adopted. Since traversing a codebook for massive MIMO is
time-consuming, hierarchical codebook-based beam training is
then proposed, where narrow beams are iteratively identified
based on the trained wide beams to reduce the training
overhead [3], [4], [5]. To exploit the channel coherence, some
beam training schemes based on deep learning are proposed.
In [6], the optimal beam is predicted by a deep neural network
(DNN) based on the sampled narrow beams. Since the narrow
beams can not cover the entire angle of interest, a DNN-based
wide beam training scheme is proposed [7].
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With a significant increase of antenna aperture in
XL-MIMO, the users are more likely to be located in the near-
field region in XL-MIMO than in massive MIMO. Therefore,
the beam training schemes for massive MIMO based on the
far-field channel may not be applicable for XL-MIMO. In [8],
a polar-domain representation of the near-filed channel with
the corresponding codebook considering both the distance
and angle is proposed. Compared with the angular-domain
codebook of the far-field channel, the polar-domain codebook
of the near-field channel contains much more candidate
beams, which will lead to unacceptable overhead for beam
training. In [9], a fast beam training scheme is proposed for
the near-field channel, where the candidate angles are first
determined by angular-domain beam sweeping based on a
conventional far-field codebook and then the best effective
distance is determined using a polar-domain codebook based
on the obtained candidate angles. To reduce the overhead of
angular-domain exhaustive search in beam sweeping, the far-
field wide beams that only contain angular information are
utilized to predict the optimal near-field beam based on deep
learning [10]. However, generating wide beam codebook by
powering off some antennas will cause power loss. Besides,
predicting the optimal angle and distance independently may
not achieve satisfactory performance compared to predicting
them jointly. As a result, the near-field beam training for
XL-MIMO is still a challenging topic.

Different from the existing works, in this letter, we train
the DNN by performing beam training based on the near-
field codebook that contains both angular and distance
information, where the optimal angle and distance are jointly
predicted instead of independently predicted. We first propose
a deep learning-based near-field beam training (DNBT)
scheme. To further improve the beam training performance,
a DNBT with supplementary codewords (DNBT-SC) scheme
is proposed, where the supplementary codewords are selected
to perform beam training based on the output of the DNN in
the DNBT scheme.

The notations in this letter are defined as follows. The
symbols a and A define a scalar and a set, respectively. For
a vector a, [a]i denotes the ith entry of a. For a matrix A,
[A]m,n denotes the (m, n)th entry of A. A = (am,n)M×N

denotes a matrix of size M × N with each entry being
a vector, where am,n denotes the (m, n)th entry of A.
IK denotes the identity matrix of size K. (·)T, (·)H, | · |
denote the transpose, conjugate transpose and absolute value,
respectively. ⌊·⌋ denotes the floor function. CN (0, σ2) denotes
the complex Gaussian distribution with zero mean and the
variance being σ2. U(a, b) denotes the uniform distribution
between a and b. R and C define the sets of real number and
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Fig. 1. Illustration of near-field channel between the BS and the UE.

complex number, respectively. ∅ defines the empty set. ∪ and
∩ denote the union and intersection of sets, respectively.

II. SYSTEM MODEL

In this letter, we consider the downlink beam training
for XL-MIMO. The base station (BS) is equipped with a
N -antenna uniform linear array (ULA) and the antenna
spacing is d ≜ λc/2, where λc is the carrier wavelength. For
simplicity, only one radio frequency (RF) chain is considered
at the BS, which implies that we only need analog beamformer
to perform the downlink beam training, and a single-antenna
user equipment (UE) is considered. The received signal by the
UE can be expressed as

y =
√

Phvx + η, (1)

where v ∈ CN denotes the analog beamformer, η ∼
CN (0, σ2

n) denotes the channel noise, P denotes the transmit
power of the BS, and x denotes the transmitted signal which
is typically normalized in power, i.e., |x|2 = 1. h ∈ C1×N

denotes the near-field downlink channel between the BS and
the UE, and can be expressed as [8]

h =

√
N

L

L∑
l=1

gle
−jkcrlbH(ϕl, rl), (2)

where kc ≜ 2π/λc is the wavenumber corresponding to λc. L
denotes the number of multipaths and gl ∼ CN (0, σ2

l ) denotes
the channel gain of the lth path. ϕl ≜ sin φl denotes the spatial
angle, where φl ∈ [−π/2, π/2] denotes the physical angle.
The near-field channel steering vector can be expressed as

b(ϕl, rl) =
1√
N

[e−jkc(r
(1)
l −rl), · · · , e−jkc(r

(N)
l −rl)]T, (3)

where rl denotes the distance between the BS and the
scatterer or the UE, and r

(n)
l denotes the distance between

the nth antenna of the BS and the scatterer or the UE for
n = 1, 2, . . . , N , as shown in Fig. 1.

The near-field channel steering vectors are sampled by some
curves, which are termed as the distance rings [8]. The spatial
angle and distance sampling can be expressed as

ϕn =
2n−N − 1

N
, n = 1, 2, · · · , N, (4)

rn,s =
N2d2

2sβ2
∆λc

(1− ϕ2
n), s = 1, 2, · · · , S, (5)

respectively. S is the number of distance rings and β∆ denotes
the correlation of the near-field channel steering vectors. Based
on the angle and distance sampling, the near-field codeword
can be expressed as

wn,s = b(ϕn, rn,s), n = 1, 2, · · · , N, s = 1, 2, · · · , S. (6)

Then we define a near-field codebook as W ≜ (wn,s)N×S ,
where wn,s is the (n, s)th entry of W . The near-
field codebook which considers both angular and distance
information is two-dimensional (2D) and contains totally
Q ≜ NS codewords. Note that different from the codebook
generating method for wide beams by powering off some
antennas [10], in this letter we generate the codebook with
all the antennas powered on, which will not cause any power
loss.

According to (1), we can obtain the achievable rate of the
UE by

R = log2

(
1 +

P |hv|2

σ2
n

)
. (7)

The beam training aims to identify the optimal codeword
from W to match the near-field channel with the largest
achievable rate. In fact, the beam training can be formulated
as

wñ,s̃ = arg max
wn,s∈W

log2

(
1 +

P |hwn,s|2

σ2
n

)
, (8)

where ñ and s̃ denote the angle index and distance index of
the optimal codeword, respectively.

The most intuitive method to identify the optimal codeword
is beam sweeping which needs to traverse the entire codebook.
However, the significant increase in the scale of antenna
array in XL-MIMO makes the overhead of beam sweeping
unacceptable. In addition, the distance information of the near-
field channel leading to greater non-linearity also increases the
difficulty of beam training. Since the DNN is good at dealing
with nonlinear problem, in the next section, the DNN is used
to preform beam training in the near-field domain to reduce
the overhead.

III. NEAR-FIELD BEAM TRAINING
BASED ON DEEP LEARNING

A. Initial Codeword Selection

We initially select a small number of codewords from W
for beam training. For each distance ring, the codewords
are selected uniformly with interval D. Therefore, the total
number of initial codewords from W is

E = TS, (9)

where T ≜ ⌊N/D⌋ is the number of initial codewords for each
s. The angle index of the selected codewords can be expressed
as

n(s) = n
(s)
0 + kD (10)

for k = 0, 1, · · · , T − 1 and s = 1, 2, · · · , S, where n
(s)
0 ∈

{1, 2, · · · , D} denotes the initial angle index with respect to s.
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Fig. 2. The selected codewords in the near-field codebook W .

Fig. 3. The structure of the DNN for near-field beam training.

To maximize the coverage of selected codewords in the whole
angular domain, there should be a certain offset between the
initial angle indices of adjacent distance rings, i.e., n

(s+1)
0 =

n
(s)
0 + ∆n. For example, the initial codewords are shown in

Fig. 2(a), where N = S = 8, D = 4 and ∆n = 1. It can
be seen that the initial codewords are evenly distributed in the
entire near-field codebook.

B. The Structure of DNN

The structure of the DNN for beam training is illustrated
in Fig. 3, where the DNN consists of an input layer, hidden
layers and an output layer.

1) Input Layer: The codewords initially selected in the
previous subsection are used for beam training and the
absolute value of the received signal matrix fed from the UE
to the BS is defined as Y ∈ RN×S , where the (n, s)th entry
of Y can be expressed as

[Y ]n,s =

{
|
√

Phwn,sx + η|, n = n(s)

0, n ̸= n(s)
(11)

for n = 1, 2, · · · , N and s = 1, 2, · · · , S.
To reduce the dispersion of data and the learning difficulty

of the DNN, Y is normalized and then fed into the hidden
layers.

2) Hidden Layers: For the highly nonlinear problem of
near-field beam training, we increase the depth of the hidden
layers to achieve better performance. In addition, the residual
network, which introduces a shortcut connection, is adopted to
solve the degradation problem in deeper network. The hidden
layers consist of several residual blocks and a fully connected
(FC) layer, where each residual block is composed of several
convolutional (Conv) layers followed by a batch normalization

(BN) layer, a ReLU activation layer and a dropout layer. The
Conv layers and FC layer mainly act as classifiers. The role of
the ReLU activation layer is to improve the nonlinear mapping
capability of the DNN. The BN layers and dropout layers
are used to speed up the convergence of the DNN and avoid
overfitting. The multidimensional output of the residual block
is flattened into one dimensional (1D) data to facilitate the
processing of the FC layer.

3) Output Layer: We can obtain the output of the DNN by
the softmax function as

[p]k =
e[Γ]k∑Q

q=1 e[Γ]q
(12)

for k = 1, 2, · · · , Q, where p ∈ RQ denotes a probability
vector and Γ ∈ RQ denotes the output of the hidden layers.

We can reshape p into a matrix P ∈ RN×S by columns,
where [P ]n,s denotes the probability that wn,s in W is the
predicted optimal codeword.

C. Offline Training of DNN

Based on the structure of the DNN in Fig. 3, we adopt
the supervised learning method to perform beam training.
To obtain the training dataset and the labels, we randomly
generate M near-field channel vectors hm, m = 1, 2, · · · , M ,
according to (2) for offline training of the DNN, while Y m as
the input of the DNN can be obtained by (11). According to
the simplified form of (8), the optimal angle index and distance
index corresponding to Y m can be identified as

(ñm, s̃m) = arg max
n∈{1,2,··· ,N}
s∈{1,2,··· ,S}

|hmwn,s| , (13)

which can be obtained by beam sweeping. Then, we convert
(ñm, s̃m) into an 1D index as

q̃m ≜ (s̃m − 1) N + ñm. (14)

The probability vector p̃m obtained by one-hot encoding of q̃m

is the output label corresponding to Y m, and can be expressed
as

[p̃m]q =

{
1, q = q̃m,

0, q ̸= q̃m.
(15)

Therefore, the near-field beam training problem is trans-
formed into a multi-category problem, where each category
corresponds to a codeword in W . The cross-entropy is
adopted as the loss function of the DNN, and can be expressed
as

fLOSS (pm, p̃m) = −
Q∑

q=1

[pm]q log10[p̃m]q. (16)

D. Beam Training Scheme Based on Deep Learning

Based on the DNN trained offline, we propose two schemes,
including DNBT and DNBT-SC.
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Algorithm 1 Deep Learning-Based Near-Field Beam Training
(DNBT)

1: Input: W .
2: Select initial codewords to obtain Y via (11).
3: Obtain p by feeding Y into the trained DNN.
4: Obtain q̂ via (17).
5: Determine (n̂, ŝ) based on q̂ via (14).
6: Output: wn̂,ŝ.

1) DNBT: Straightforwardly, the DNBT scheme predicts
the optimal codeword based on p in (12). The index of the
largest entry of p can be expressed as

q̂ = arg max
q∈{1,2··· ,Q}

[p]q. (17)

Then we determine (n̂, ŝ) based on q̂ according to (14). The
predicted optimal codeword wn̂,ŝ is the (n̂, ŝ)th entry of W .
In Algorithm 1, we present the detailed process of the DNBT
scheme.

2) DNBT-SC: To further improve the accuracy of codeword
prediction, beam training based on some supplementary
codewords is considered in the DNBT-SC scheme.

Firstly, we define the set composed of 2D indices of initial
codewords in (10) as

Iinit ≜ {(ne, se) , e = 1, 2, · · · , E} , (18)

where E is defined in (9). Correspondingly, the set composed
of absolute value of the received signal corresponding to Iinit

can be expressed as

Yinit ≜ {|ye|, e = 1, 2, · · · , E} , (19)

where ye ≜
√

Phwne,se
x + η.

Then, we define a matrix P 0, which is the same as P except
that the entries of P 0 corresponding to Iinit are all zero, as

[P 0]ne,se
= 0, e = 1, 2, · · · , E. (20)

The purpose of (20) is to ensure that the initial codewords
will no longer be used for the additional beam training. The
set composed of the 2D indices corresponding to the K largest
entries of P 0 can be defined as

Isup ≜ {(nk, sk) , k = 1, 2, · · · , K} , (21)

satisfying Iinit ∩ Isup = ∅. We perform additional beam
training using the supplementary codewords corresponding
to Isup. For example, the supplementary codewords are
illustrated in Fig. 2(b), where K = 6 and Isup =
{(4, 2), (5, 3), (6, 4), (3, 4), (4, 5), (5, 6)}.

Similar to (19), the set composed of absolute value of the
received signal corresponding to Isup can be defined as

Ysup ≜ {|yk|, k = 1, 2, · · · , K} . (22)

We make a union for Iinit and Isup, and have

Itot ≜ Iinit ∪ Isup = {(ng, sg) , g = 1, 2, · · · , G} , (23)

Algorithm 2 Deep Learning-Based Near-Field Beam Training
With Supplementary Codewords (DNBT-SC)

1: Input: W , K.
2: Select initial codewords to obtain Y via (11).
3: Obtain p by feeding Y into the trained DNN.
4: Obtain P by reshaping p and determine P 0 via (20).
5: Obtain Iinit and Yinit via (18) and (19), respectively.
6: Obtain Isup and Ysup via (21) and (22), respectively.
7: Obtain Itot and Ytot via (23) and (24), respectively.
8: Determine ĝ via (25).
9: Output: wnĝ,sĝ

.

where G ≜ E + K denotes the total number of selected
codewords and (ng, sg) denotes the 2D index of a selected
codeword. We also make a union for Yinit and Ysup, and have

Ytot ≜ Yinit ∪ Ysup = {|yg|, g = 1, 2, · · · , G} , (24)

where yg denotes the received signal by the UE corresponding
to wng,sg

.
Finally, the index of the largest entry in Ytot can be obtained

by

ĝ = arg max
g∈{1,2··· ,G}

|yg|. (25)

Therefore, the predicted optimal codeword is wnĝ,sĝ
.

In Algorithm 2, we present the detailed process of the DNBT-
SC scheme.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the DNBT
and DNBT-SC schemes. The downlink beam training for XL-
MIMO system is considered. The number of channel paths
is set as L = 3. For line-of-sight (LoS) path, the complex
channel gain is set as g1 ∼ CN (0, 1). And for NLoS paths,
the channel gain is set as gl ∼ CN (0, 0.01), l = 2, 3. The
number of antennas equipped at the BS is N = 512 and the
carrier frequency is fc = 60GHz. The angles of the UE or
scatterer are randomly generated by φl ∼ U(−60, 60). And the
distances between the BS and the UE or scatterer are randomly
generated by rl ∼ U(10, 60). For simplicity, the BS transmits
the signal x = 1 with the power of P = 1. The number of
distance rings of the near-field codebook is S = 8, so the total
number of codewords is I ≜ NS = 4096. The correlation of
near-field channel steering vectors is set as β∆ = 1.2.

For the DNN, the hidden layers contain a total of 10 residual
blocks. Each residual block contains 2 Conv layers with 2 and
8 kernels respectively, while the size of the convolution kernel
is 3×3. The size of dataset is 50000, of which 80% is used for
training and 20% for testing. The learning rate of the DNN is
α = 0.001. The number of epochs for training the DNN and
the batch size are set as 100 and 1000, respectively.

The performance of the DNBT scheme and the DNBT-
SC scheme is evaluated by two metrics. One metric is
the achievable rate R defined in (7). The other metric
is normalized gain, which can be defined as z ≜
|hwn̂,ŝ|2/|hwñ,s̃|2. wñ,s̃ and wn̂,ŝ are the optimal codeword
and the predicted optimal codeword, respectively.
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Fig. 4. Comparisons of the proposed schemes with the existing schemes in
terms of normalized gain for different SNR.

Fig. 5. Evaluation of the normalized gain for different intervals D.

Fig. 6. Comparisons of the proposed schemes with the existing schemes in
terms of achievable rate for different SNR.

In Fig. 4, we compare the DNBT and DNBT-SC schemes
with the original and the improved schemes in [10] in terms of
the normalized gain for different signal-to-noise ratio (SNR).
The interval of codeword selection and the offset of initial
angle index are set as D = 32 and ∆n = 4, respectively.
The number of supplementary codewords in the DNBT-SC
scheme is set as K = 5 or 20. The simulation parameters
of the existing schemes in [10] are set as M = 128 and
(La, Ld) = (5, 1) or (10, 2), where M , La and Ld denote
the overhead of initial training, additional training for angle
and distance, respectively. From the figure, both DNBT and
DNBT-SC can improve the normalized gain as K increases;
and in particular, the latter is much better than the former
because supplementary codewords are used by the latter. When
the SNR is larger than 15dB, DNBT-SC with K = 20 can
achieve over 95% of the normalized gain of beam sweeping
while the training overhead is reduced by 96.4%. It is seen that
the DNBT scheme outperforms the original scheme in [10],
since the latter powers off some antennas to generate wide
beams and causes power loss. Besides, DNBT-SC is better
than the improved scheme in [10] when their training overhead

is the same, because the latter predicts the optimal angle
and distance independently but the former predicts them
jointly. We can see that the DNBT-SC scheme with K = 5
can approach the performance of the improved scheme with
La = 10, while the overhead of the former can be reduced by
around (148− 133)/148 = 10% compared to the latter.

In Fig. 5, we evaluate the normalized gain for different
intervals D. It can be seen that the normalized gain
will decrease with the increasing D, since less codewords
are utilized for beam training. The DNBT-SC scheme
outperforms the DNBT scheme, implying that the beam
training using supplementary codewords can effectively
improve the performance. When D ≤ 8, the normalized gain
of the DNBT-SC scheme has more than 12% performance
improvement over the DNBT scheme.

In Fig. 6, we compare different schemes in terms of
achievable rate for different SNR. The initial training overhead
is set to be the same E = 128 for different schemes. It is seen
that both DNBT and DNBT-SC scheme can achieve better
performance than the schemes in [10]. As K increases, the
achievable rate of the DNBT-SC scheme can approach that of
beam sweeping.

V. CONCLUSION
In this letter, we have trained the DNN by performing the

beam training based on near-field codebook that contains both
angular and distance information, where the optimal angle and
distance have been jointly predicted instead of independently
predicted. We have proposed the DNBT and DNBT-SC
schemes. Simulation results have shown that the proposed
schemes can achieve better beam training performance than
the existing schemes under the same overhead. In the future,
we will continue our work with the focus on the multiuser
scenario.
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