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Blockage Prediction and Fast Handover of Base Station
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Abstract— We propose a blockage prediction and fast base
station (BS) handover (BP-FBSH) scheme based on the ref-
erence signal received power (RSRP) of the mobile terminal
(MT) and the indices of the BS transmit beams for millimeter
wave communications. Using a specific beam tracking method
called neighborhood beam search, the BS transmits multiple
neighborhood beams to the MT and collects the RSRPs of
these beams from the MT. Then, the BP-FBSH scheme uses the
beam-associated information sequences composed of the RSRPs
and the indices of the BS transmit beams to train a long
short-term memory (LSTM)-based blockage prediction neural
network (BPNN). If the BPNN predicts the MT is to be blocked,
the scheme triggers a handover of this MT to an adjacent BS
as well as determining an initial access (IA) beam for it by an
LSTM-based BS handover neural network. Simulation results
based on Wireless Insite software show that the scheme can
achieve high success rate for both the blockage prediction and
the IA beam prediction.

Index Terms— Blockage prediction, base station (BS) handover,
reference signal received power (RSRP), long short-term memory
(LSTM), millimeter wave (mmWave) communications.

I. INTRODUCTION

AS one of the key technologies of 5G and even 6G,
millimeter wave (mmWave) massive MIMO communi-

cations play important roles in improving system capacity and
spectral efficiency [1], [2], [3]. However, many challenging
problems need to be solved for mmWave communications,
including the weak diffraction characteristics and high pene-
tration loss of the mmWave signal, which heavily relies on
a line-of-sight (LoS) link to obtain sufficient received signal
power [2], [4], [5]. Therefore, mmWave communications are
highly sensitive to the channel blockage. Once the LoS link
is blocked, it will lead to a sudden link failure and the
transceivers will start to search for another effective link,
during which a handover of another base station (BS) may
be triggered. How to avoid the sudden link failure by accu-
rately predicting the blockage and then performing a fast BS
handover is on focus.

Current works on blockage prediction for mmWave com-
munications mainly consider the blockage due to the mobile
obstacles in the environment [4], [6], [7], [8] and the blockage
due to the mobile terminal (MT) [9], [10], [11]. To predict
the blockage due to the mobile obstacles, the visual data

Manuscript received 23 May 2023; revised 17 June 2023; accepted 23 June
2023. Date of publication 26 June 2023; date of current version 12 August
2023. This work was supported in part by the National Natural Science
Foundation of China under Grant 62071116. The associate editor coordinating
the review of this letter and approving it for publication was Z. Gao.
(Corresponding author: Chenhao Qi.)

Rongshun Tang and Chenhao Qi are with the School of Information
Science and Engineering, Southeast University, Nanjing 210096, China
(e-mail: tang_rs@seu.edu.cn; qch@seu.edu.cn).

Yan Sun is with Huawei Technologies Company Ltd., Shanghai 201206,
China (e-mail: sunyan49@huawei.com).

Digital Object Identifier 10.1109/LCOMM.2023.3289581

captured by cameras equipped on the BS [4], the unique
diffracted signal patterns associated with approaching obsta-
cles [6], [7], and the pre-blockage wireless signatures for
blockage prediction with received signal power sequences of
different beams [8], are considered. To predict the blockage
due to the mobility of MT, the acquired sub-6 GHz channel
state information [9], the sequences of beam indices of the
BS [10], and the sequences of the signal-to-interference-plus-
noise ratio of the MT [11], are used. Since beam tracking is
typically employed in mmWave mobile communications, it is
important that the blockage prediction can be implemented
with the beam tracking methods.

Different from the existing works, in this letter we propose a
blockage prediction and fast BS handover (BP-FBSH) scheme
for mmWave mobile communications based on the reference
signal received power (RSRP) of the MT and the indices of the
BS transmit beams with a specific beam tracking method. The
contributions of this letter are mainly summarized as follows.

1) Using a beam tracking method called neighborhood beam
search, the BS transmits multiple neighborhood beams
to the MT and collects the RSRPs of these beams from
the MT. Then the beam-associated information sequence
composed of the RSRPs and the indices of the BS
transmit beams is used to train a long short-term mem-
ory (LSTM)-based blockage prediction neural network
(BPNN) to predict the future blockage state of the MT.

2) If the BPNN predicts the MT is to be blocked, a BS
handover is triggered so that this MT is connected to
an adjacent BS and an initial access (IA) beam for this
MT will be determined by an LSTM-based BS handover
neural network (BHNN).

Notations: Symbols for matrices and vectors are written
in boldface. a,a,A denote a scalar, a vector and a matrix,
respectively, while (∗)T and (∗)H denote the transpose and the
conjugate transpose, respectively. |a| represents the absolute
value of a. R and C represent the set of real numbers and
the set of complex numbers, respectively. ⊗ represents the
Kronecker product.

II. SYSTEM MODEL

An mmWave BS equipped with a half-wavelength uniform
planar array (UPA) of M×N antennas serves an MT equipped
with a single antenna. For the UPA, the channel steering vector
can be expressed as

a(ϕ, θ) =
1√
MN

[
1, ejπθ, · · · , ejπ(N−1)θ, ejπϕ, ejπ(θ+ϕ),

· · · , ejπ[(N−1)θ+(M−1)ϕ]
]T = vM (ϕ)⊗ vN (θ)

(1)

where ϕ ∈ (−1, 1) and θ ∈ (−1, 1) are the elevation
and azimuth angles for a channel path, respectively. Note
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that ϕ and θ can be expressed as ϕ ≜ sin(ψ) cos(ω) and
θ ≜ sin(ψ) sin(ω), respectively, where ψ ∈ [0, π/2) and
ω ∈ [0, 2π) are denoted as the physical elevation and azimuth
angles, respectively. vN (θ) is the channel steering vector for
a half-wavelength uniform linear array with N antennas, and
can be expressed as

vN (θ) =
1√
N

[
1, ejπθ, · · · , ejπ(N−1)θ

]T

. (2)

It is demonstrated that the mmWave channel only has a few
channel paths, including one LoS path and L − 1 non-LoS
(NLoS) paths, while the channel power is concentrated on the
LoS path. At the tth time frame, the mmWave channel between
the BS and a single-antenna MT, denoted by ht ∈ CMN , can
be written as

ht =
√
MN

Lt

Lt∑
l=1

αt,la (ϕt,l, θt,l) (3)

where ϕt,l and θt,l denote the elevation and azimuth angles
of departure (AoDs), respectively, and αt,l denotes the
complex-valued channel gain of the lth path, for l =
1, 2, . . . , Lt. We define M ≜ {1, 2, . . . ,M} and N ≜
{1, 2, . . . , N}.

The BS performs analog beamforming to steer the beam
to MN different directions, by changing the phases of the
phase shifter network. Furthermore, to make the beams cover
the whole angle space, ϕ and θ are quantized according
to the resolution of 1/M and 1/N , respectively. As shown
in Fig. 1, the MN beams corresponding to MN different
directions form a two-dimensional grid. Therefore, a prede-
fined beamforming codebook can be denoted by F , where
fm,n = a (−1 + (2m− 1)/M,−1 + (2n− 1)/N) ,∀m ∈
M,∀n ∈ N , denotes the (N(m− 1) + n)th codeword of F .
At t = 0 time frame, the BS performs beam sweeping, which
exhaustively tests all the codewords in F by using them as
the BS transmit beams. Then the signal received by the MT
is expressed as

y(0)
m,n = hH

0 fm,nx+ ηm,n, ∀m ∈M, ∀n ∈ N , (4)

where x denotes the transmit pilot symbol with normalized
power |x| = 1, and ηm,n ∼ CN

(
0, σ2

)
is the additive white

Gaussian noise with zero mean and the variance being σ2.
Based on the block fading channel model, we assume h0 keeps
constant during the beam sweeping. The indices of the best
BS transmit beam in F , also known as the IA beam, are

[m̃0, ñ0] = arg max
m∈M,n∈N

|y(0)
m,n|. (5)

Starting from t = 1 time frame, the BS performs beam
tracking, which can utilize previous information to assist the
search for the best beam at the current time frame, therefore
reducing the overhead of transmitting beams compared to the
beam sweeping. Suppose the indices of the best BS transmit
beam obtained at the (t − 1)th time frame are [m̃t−1, ñt−1],
t = 1, 2, . . . , T , where T is the total number of time frames
for beam tracking. For the beam tracking at the tth time
frame, to reduce the overhead, the BS uses a beam tracking
methood called neighborhood beam search, which only tests
a small number of beams adjacent to f m̃t−1,ñt−1

. Suppose

Fig. 1. Illustration of the neighborhood beam search method.

the neighborhood sizes in elevation and azimuth are denoted
by odd integers P and Q, respectively, where P ≪ M and
Q ≪ N , as shown in Fig. 1. For the beam tracking at each
time frame, the BS only tests PQ beams, which results in the
reduced overhead of beam tracking by MN − PQ compared
to the beam sweeping. We define

Pt ≜ {m̃t−1−
P

2
+

1
2
, m̃t−1−

P

2
+

3
2
, . . . , m̃t−1+

P − 1
2

},

(6)

Qt ≜ {ñt−1 −
Q

2
+

1
2
, ñt−1 −

Q

2
+

3
2
, . . . , ñt−1 +

Q− 1
2

}.

(7)

Then the signal received by the MT at the tth time frame can
be expressed as

y(t)
m,n = hH

t fm,nx+ ηm,n, ∀m ∈ Pt, ∀n ∈ Qt. (8)

The RSRP sequence of the MT is defined as

rt ≜
{
|y(t)

m,n|, ∀m ∈ Pt, ∀n ∈ Qt

}
(9)

which is required to be fed back from the MT to the BS. The
indices of the best beam obtained at the tth time frame are

[m̃t, ñt] = arg max
m∈Pt,n∈Qt

|y(t)
m,n|. (10)

Based on [m̃t, ñt], we perform the neighborhood beam
search at the (t+ 1)th time frame in the similar procedure to
obtain [m̃t+1, ñt+1] until finishing a period of T time frames
for beam tracking. After that, a new period including one
time-frame beam sweeping and T time-frame beam tracking
will be performed.

III. BLOCKAGE PREDICTION AND FAST BS HANDOVER

As shown in Fig. 2, there are two BSs, represented by
BS1 and BS2, to provide mmWave communication service for
several MTs that move according to certain traffic rules on the
urban road. Suppose one MT is first served by BS1 and there is
a LoS link between BS1 and it for mmWave communications.
But when this MT turns a corner, the LoS link is suddenly
blocked and only much weaker NLoS links exist, resulting in
a severe drop in signal strength. In this context, it is necessary
to predict the future blockage state of this MT and trigger
a handover to an adjacent BS, i.e., BS2, if the MT is to be
blocked. Furthermore, the IA beam of the handover BS, i.e.,
BS2, needs to be determined for the MT after the handover.

Authorized licensed use limited to: Southeast University. Downloaded on August 12,2023 at 13:57:07 UTC from IEEE Xplore.  Restrictions apply. 



2144 IEEE COMMUNICATIONS LETTERS, VOL. 27, NO. 8, AUGUST 2023

Fig. 2. Illustration of blockage prediction and BS handover.

We define wt ∈ {0, 1} as the blockage state of the MT at
the tth time frame. If wt = 1, it means that the LoS link is
blocked; otherwise, it means that the LoS link is unblocked.
Since the LoS link is much stronger than the NLoS link, the
RSRP of the MT with the LoS link is much larger than that of
the NLoS link. We define an RSRP threshold δ. Then we have

wt =

{
0, if |ym̃t,ñt

| ≥ δ,

1, else.
(11)

To indicate whether there will be a blockage occurrence in
the future R time frames, we define

bt ≜

{
0, if wt+i = 0, ∀i ∈ {1, 2, . . . , R}
1, otherwise

(12)

where R is a predefined parameter. If the MT moves at a high
speed, we may set R large; otherwise, we may set R small.
In fact, bt = 0 indicates the blockage will not occur from the
(t + 1)th to (t + R)th time frames; otherwise, the blockage
will occur and a handover of the MT to the other BS may be
considered.

Different from the existing works that need additional
information of the MT, in this letter, we use the indices of the
BS transmit beams as well as the RSRPs, which are generally
available to the BS, to predict the blockage state of the MT.

According to the neighborhood beam search method, the
beam-associated information collected by the BS at the tth
time frame is composed of the RSRPs and the indices of the
BS transmit beams, and can be defined as

gt ≜ {m̃t−1, ñt−1, rt}. (13)

Since m̃t and ñt can be determined by m̃t−1, ñt−1 and rt,
they are not included in the beam-associated information.

To unify the data size for the blockage prediction, we define
a beam-associated information sequence Gt at the tth time
frame including Rob time-frame beam-associated information
as

Gt ≜
{
gt+i, i = −Rob + 1, . . . , 0

}
. (14)

Given Gt, the objective is to maximize the probability that
the blockage prediction is consistent with the actual blockage
state, and can be expressed as

max
b̂t

P
(
b̂t = bt

∣∣∣Gt

)
(15)

where b̂t is the predicted value of bt.

If the blockage will occur from the (t+1)th to (t+R)th time
frames, a BS handover will be triggered for the MT so that
this MT is connected to an adjacent BS and an IA beam of the
handover BS for this MT needs to be determined. To reduce
the overhead of beam sweeping when determining the IA
beam, the objective is to maximize the probability that the
IA beam prediction is consistent with the best beam obtained
by beam sweeping. Then the objective can be expressed as

max
d̂t

P
(
d̂t = dt

∣∣∣Gt, bt = 1
)

(16)

where dt is the index of the best beam in F obtained by the
beam sweeping of the handover BS and d̂t is the predicted
value of dt.

In fact, (15) and (16) are highly nonlinear, which makes
them difficult to be solved by traditional methods. Many
studies have already shown that data-driven deep learning
can effectively handle nonlinear problems. In particular, the
LSTM networks are good at dealing with such problems
related to data sequences [12], which inspires us to solve (15)
and (16) using an LSTM-based BPNN and an LSTM-based
BHNN, respectively. During the offline training, the data sets
for the BPNN and the BHNN are

{
Gt, bt

}
and

{
Gt, dt

}
,

respectively. During the online deployment, the BPNN is used
to make a real-time blockage prediction. If the BPNN predicts
that the blockage will occur, the MT will be connected to an
adjacent BS and the BHNN will be used to predict the index
of an IA beam for fast BS handover.

As shown in Fig. 3(a), the BPNN is composed of four
modules, including the preprocessing module, full connection
(FC) module, LSTM module and binary classifier module.
The preprocessing module normalizes gt+i, for i = −Rob +
1,−Rob + 2, . . . , 0, and can be expressed as

mt+i−1 =
m̃t+i−1

M
, nt+i−1 =

ñt+i−1

N
, rt+i =

rt+i

Zt+i
(17)

where

Zt+i ≜ max
m∈Pt+i,n∈Qt+i

|y(t+i)
m,n | (18)

based on (9). The FC module consists of two FC layers and the
numbers of neurons in them are set as 128 and 64, respectively.
The activation function adopted in the FC layers is the ReLU
function. The LSTM module consists of one LSTM layer and
the number of neurons in it is set as 256. The binary classifier
module including an FC layer with 2 neurons and a Softmax
activation layer, is used to output the probability of blockage,
denoted as Pbt=0 and Pbt=1 in Fig. 3(a). The BPNN is trained
by Gt and the corresponding blockage label bt based on the
cross entropy loss. The adaptive moment estimation (Adam)
optimizer is used to track the gradient and update the weight
parameters.

As shown in Fig. 3(b), the structure of BHNN is mostly the
same as that of BPNN, while their difference is that the BHNN
uses the multiple classifier module to output the predicted
index of the IA beam of the handover BS. The multiple
classifier module including an FC layer with MN neurons
and a Softmax activation layer, is used to obtain the probability
that each of the MN beams is the best beam obtained by the
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Algorithm 1 Blockage Prediction and Fast BS Handover (BP-
FBSH) Scheme
Input: Gt−1, m̃t−1, ñt−1

Output: Gt, m̃t, ñt for beam tracking or d̂t for fast BS
handover.

1: BS transmits neighborhood beams based on (6) and (7).
2: BS collects the RSRP and obtains rt via (9).
3: Determine m̃t and ñt via (10).
4: Obtain gt via (13).
5: Obtain Gt via (14).
6: Use the BPNN to predict the blockage state b̂t via (19).
7: if b̂t = 1 then
8: Use the BHNN to obtain d̂t via (20).
9: Perform the BS handover.

10: end if

beam sweeping, denoted as P1, P2, . . . , PMN in Fig. 3(b).
The BPNN is trained by Gt and the corresponding IA beam
label dt based on the cross entropy loss and Adam optimizer.

During the online deployment of the trained BPNN and
BHNN, the BS first transmits PQ neighborhood beams based
on (6) and (7), and then collects the RSRP fed back from
the MT to determine rt via (9). We can determine m̃t and
ñt via (10) for the beam tracking in the (t+ 1)th time frame.
After Gt is obtained via (13), we determine Gt via (14). Then
the BPNN predicts the blockage state based on Gt, which can
be expressed as

b̂t = fBPNN (Gt) . (19)

If b̂t = 1, indicating that the blockage will occur, Gt is
input into the BHNN to predict the IA beam of the handover
BS, which can be expressed as

d̂t = fBHNN (Gt) . (20)

Then the BS handover can be fast performed. If b̂t = 0, the BS
handover will not be triggered and Gt, m̃t and ñt are output
for the beam tracking at the (t+ 1)th time frame.

The detailed steps of the BP-FBSH scheme are summarized
in Algorithm 1.

IV. SIMULATION RESULTS

As shown in Fig. 4, we evaluate different schemes using
Wireless Insite software [13], where mmWave mobile com-
munications in Rosslyn, Virginia, are considered. The MT
is first served by BS1. When the MT turns a corner, the
channel blockage will occur, and the BS handover will be
triggered so that the MT is served by BS2. In particular,
we consider the turning situations of the two intersections
in Fig. 4. For each turning situation, dozens of trajectories
are generated to cover the actual trajectories of the MT. The
mmWave BS working at 28 GHz is equipped with a UPA
including MN = 1024 antennas and the MT is equipped with
a single antenna. The detailed simulation parameters are given
in Table I.

The speed of the MT is set as 60 km/h. The interval
of two adjacent time frames for beam tracking is set as
60 ms. We use Wireless Insite software to generate the channel

Fig. 3. Illustration of the proposed BPNN and BHNN.

Fig. 4. Simulated mmWave mobile communications in Rosslyn.

TABLE I
DETAILED PARAMETERS FOR SIMULATION

matrices between two BSs and the MT at each time frame. The
neighborhood sizes are set to P = Q = 3 for simplicity and
the number of gt in Gt is set to be Rob = 20.

Inspired by [10], we also use the beam-associated informa-
tion sequences composed of only the indices of the BS transmit
beams, i.e., ḡt ≜ {m̃t−1, ñt−1}, to train the LSTM networks
for blockage prediction and beam prediction, which is named
as comparison scheme.

Fig. 5 shows the success rate of the blockage prediction with
R = {3, 4, 5}. For an MT that is to be blocked, if the blockage
can be predicted within R time frames before the occurrence of
the blockage while the non-blockage is predicted in the other
time frames, the blockage prediction for the MT is defined
to be successful; otherwise, it is defined to be failed. It can
be seen that the success rate of the BP-FBSH scheme can
reach higher than 90% at SNR = 15dB and is much larger
than that of the comparison scheme, which implies that only
using the indices of the BS transmit beams is not enough to
catch the moving information of the MT. Moreover, larger
R leads to the better success rate, where the reason is that
larger R provides more tolerance of time frames for blockage
prediction.
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Fig. 5. Success rate of blockage prediction with different R.

Fig. 6. Success rate of IA beam prediction for the handover BS.

Fig. 7. Comparisons of RSRP between the BP-FBSH and the passive
handover schemes.

Fig. 6 shows the success rate of IA beam prediction for the
handover BS. In practice, if the blockage is predicted to occur,
we may need to predict K IA beams instead of only the best
IA beam, so that the handover BS has more candidate beams
for the MT. Therefore, if the predicted K IA beams include
the actual best IA beam, the beam prediction is defined to be
successful; otherwise, it is defined to be failed. From Fig. 6,
the performance of the BP-FBSH scheme is much better than
that of the comparison scheme, where the former can reach
higher than 95% at SNR = 15 dB.

Fig. 7 compares the RSRP between the BP-FBSH and
the passive handover schemes, where the RSRP of tth time
frame is defined to be the best one of rt. For the passive

handover scheme, the handover BS performs beam sweep-
ing to determine the IA beam once the blockage occurs.
Therefore, the BP-FBSH scheme can proactively predict the
blockage and fast determine the IA beam for the handover BS,
which prevents severe drop in signal strength caused by the
blockage.

V. CONCLUSION

In this letter, the BP-FBSH scheme has been proposed for
mmWave mobile communications. Based on the neighbor-
hood beam search method, the BP-FBSH scheme uses the
beam-associated information sequences composed of RSRPs
and the corresponding indices of the BS transmit beams to
train LSTM networks. High success rates for both the blockage
prediction and the IA beam prediction have been achieved.
Fast BS handover has been accomplished to avoid severe drop
in signal strength caused by the channel blockage. In the
future, we will extend our work to the MT with multiple
antennas.

REFERENCES

[1] C. Qi, P. Dong, W. Ma, H. Zhang, Z. Zhang, and G. Y. Li, “Acquisition
of channel state information for mmWave massive MIMO: Traditional
and machine learning-based approaches,” Sci. China Inf. Sci., vol. 64,
no. 8, Aug. 2021, Art. no. 181301.

[2] R. W. Heath Jr., N. González-Prelcic, S. Rangan, W. Roh, and
A. M. Sayeed, “An overview of signal processing techniques for mil-
limeter wave MIMO systems,” IEEE J. Sel. Topics Signal Process.,
vol. 10, no. 3, pp. 436–453, Apr. 2016.

[3] W. Ma, C. Qi, Z. Zhang, and J. Cheng, “Sparse channel estimation
and hybrid precoding using deep learning for millimeter wave mas-
sive MIMO,” IEEE Trans. Commun., vol. 68, no. 5, pp. 2838–2849,
May 2020.

[4] G. Charan, M. Alrabeiah, and A. Alkhateeb, “Vision-aided 6G wireless
communications: Blockage prediction and proactive handoff,” IEEE
Trans. Veh. Technol., vol. 70, no. 10, pp. 10193–10208, Oct. 2021.

[5] X. Sun, C. Qi, and G. Y. Li, “Beam training and allocation for mul-
tiuser millimeter wave massive MIMO systems,” IEEE Trans. Wireless
Commun., vol. 18, no. 2, pp. 1041–1053, Feb. 2019.

[6] L. Yu, J. Zhang, Y. Zhang, X. Li, and G. Liu, “Long-range block-
age prediction based on diffraction fringe characteristics for mmWave
communications,” IEEE Commun. Lett., vol. 26, no. 7, pp. 1683–1687,
Jul. 2022.

[7] A. Fallah Dizche, A. Duel-Hallen, and H. Hallen, “Early warning
of mmWave signal blockage using diffraction properties and machine
learning,” IEEE Commun. Lett., vol. 26, no. 12, pp. 2944–2948,
Dec. 2022.

[8] S. Wu, M. Alrabeiah, C. Chakrabarti, and A. Alkhateeb, “Blockage
prediction using wireless signatures: Deep learning enables real-world
demonstration,” IEEE Open J. Commun. Soc., vol. 3, pp. 776–796,
2022.

[9] Z. Ali, A. Duel-Hallen, and H. Hallen, “Early warning of mmWave
signal blockage and AoA transition using sub-6 GHz observations,”
IEEE Commun. Lett., vol. 24, no. 1, pp. 207–211, Jan. 2020.

[10] A. Alkhateeb, I. Beltagy, and S. Alex, “Machine learning for reliable
mmWave systems: Blockage prediction and proactive handoff,” in Proc.
IEEE Global Conf. Signal Inf. Process. (GlobalSIP), Anaheim, CA,
USA, Nov. 2018, pp. 1055–1059.

[11] S. K. Vankayala, S. K. S. Gollapudi, S. Singh, B. Jain, S. Yoon,
and A. K. Bashir, “Deep-learning based proactive handover for 5G/6G
mobile networks using wireless information,” in Proc. IEEE Globecom
Workshops, Dec. 2022, pp. 461–466.

[12] K. Ma, D. He, H. Sun, Z. Wang, and S. Chen, “Deep learning
assisted calibrated beam training for millimeter-wave communication
systems,” IEEE Trans. Commun., vol. 69, no. 10, pp. 6706–6721,
Oct. 2021.

[13] Wireless InSite 3.3.5 Reference Manual, Remcom, Inc., State College,
PA, USA, 2022. [Online]. Available: https://www.remcom.com/wireless-
insite-em-propagation-software

Authorized licensed use limited to: Southeast University. Downloaded on August 12,2023 at 13:57:07 UTC from IEEE Xplore.  Restrictions apply. 


